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Abstract 

Complex multi-agent systems often are not amenable to standard game-theoretic analysis. I 

study methods for strategic reasoning that scale to more complex interactions, drawing on 

computational and empirical techniques. Several recent studies have applied simulation to 

estimate game models, using a methodology known as empirical game-theoretic analysis. 

I report a successful application of this methodology to the Trading Agent Competition 

Supply Chain Management game. Game theory has previously played little—if any—role 

in analyzing this scenario, or others like it. In the rest of the thesis, I perform broader 

evaluations of empirical game analysis methods using a novel experimental framework. 

I introduce meta-games to model situations where players make strategy choices based 

on estimated game models. Each player chooses a meta-strategy, which is a general method 

for strategy selection that can be applied to a class of games. These meta-strategies can be 

used to select strategies based on empirical models, such as an estimated payoff matrix. I 

investigate candidate meta-strategies experimentally, testing them across different classes 

of games and observation models to identify general performance patterns. For example, I 

show that the strategy choices made using a naive equilibrium model quickly degrade in 

quality as observation noise is introduced. 

I analyze three families of meta-strategies that predict distributions of play, each inter­

polating between uninformed and naive equilibrium predictions using a single parameter. 

These strategy spaces improve on the naive method, capturing (to some degree) the effects 

of observation uncertainty. Of these candidates, I identify logit equilibrium as the champion, 

supported by considerable evidence that its predictions generalize across many contexts. 
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I also evaluate exploration policies for directing game simulations on two tasks: equilib­

rium confirmation and strategy selection. Policies based on computing best responses are 

able to exploit a variety of structural properties to confirm equilibria with limited payoff 

evidence. A novel policy I propose—subgame best-response dynamics—improves previous 

methods for this task by confirming mixed equilibria in addition to pure equilibria. I apply 

meta-strategy analysis to show that these exploration policies can improve the strategy 

selections of logit equilibrium. 
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Chapter 1 

Introduction to Games and Empirical 
Game Modeling 

Humans act not in isolation, but in the context of a rich web of social interactions. They 

trade goods and services, cooperate to build large-scale infrastructure, engage in military 

conflicts, and compete in sporting events. The common thread in these examples is that the 

outcome may depend on the choices of many individuals, each with different objectives. To 

make good decisions under these circumstances, it is necessary to reason about the behavior 

of others. 

Game theory originated in economics as a mathematical framework for modeling in­

teractions among decision makers, beginning with the seminal work of von Neumann and 

Morgenstern (1944). The theory treats individual decision makers as players in a game, 

each of whom chooses a strategy (i.e., action) from among a set of alternatives. The value 

that each player receives depends on the strategies of all players in the game, not just their 

own action. To select the best strategy, players need to reason strategically, predicting 

what the other players are likely to do and responding accordingly. The literature on game 

theory is extensive, and provides rich formalisms for both representing and solving games. 

The popularity of game theory has grown rapidly since it was introduced, and it is now 

prevalent as an analytic tool in academic disciplines including economics, computer science, 

psychology, biology, and political science. 

The field of artificial intelligence is broadly interested in designing autonomous agents 
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that exhibit intelligent behaviors. Increasingly, autonomous agents must interact with both 

humans and other intelligent agents. The area of multi-agent systems research focuses on 

designing and analyzing systems with more than one decision maker. One objective is to 

design autonomous agents that are able to achieve high utility in the presence of others. This 

may require competitive or cooperative interactions with humans or other agents. Another 

broad objective is to design rules or institutions for agent interactions that achieve the objec­

tives of the system designer. Designing such rules is often called mechanism design. For 

example, an auctioneer may want to set the rules of an auction in such a way as to maximize 

her own revenue. Both of these objectives—agent design and mechanism design—may 

require predicting what actions other agents will take. 

There are many application areas for agent technologies that may involve interactions 

with either humans or other agents. In some examples, agents augment or replace humans: 

they act as intermediaries in electronic commerce (Mackie-Mason and Wellman, 2006), 

control robots (Asada et ah, 1999), and provide adversaries for military training (Wray et al., 

2005). Multi-agent systems are also an important tool for modeling human institutions and 

behavior, including applications in computational economics (Tesfatsion and Judd, 2006), 

and air traffic control (Turner and Agogino, 2007). 

It is natural to consider game theory as a paradigm for designing and evaluating multi-

agent systems, and the approach has gained considerable popularity. However, multi-agent 

systems often pose significant challenges for game-theoretic methods. Game theory is 

usually concerned with finding exact solutions to relatively simple, stylized models of 

strategic interactions. Many multi-agent systems are complicated by large strategy spaces, 

many players, and uncertainty. These difficulties may render conventional game-theoretic 

solution methods infeasible, both analytically and computationally. Computer science offers 

methods with the potential for scaling game-theoretic analysis to much larger problems, 

including simulation, heuristic search, and structured representations. 

This thesis contributes to a growing body of work that develops computational tools 
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for strategic reasoning in very complex domains. My primary contributions advance the 

methodology of empirical game-theoretic analysis, which combines empirical methods (e.g., 

simulation) and game-theoretic principles to reason about very complex games. I illustrate 

the methodology with an application to a particularly challenging supply chain domain, 

adding to an existing body of work that uses similar approaches to study specific games. 

The literature contains examples of various methods for performing this analysis, but there 

has been little evaluation of which approaches are most effective. In this thesis, I move 

beyond specific applications to evaluate approaches for empirical game-theoretic analysis 

more generally. 

A key insight is that empirical game-theoretic analysis can be modeled as a meta-game 

that captures the observation process, including the crucial aspect of payoff uncertainty. 

Based on this model, I develop criteria and an experimental framework for evaluating 

different analytic procedures for empirical game modeling. The framework is especially 

suited to broad evaluation across different conditions, such as different classes of games 

or methods of observing payoff information. I use this capability to test the strengths and 

weaknesses of the different approaches, identifying general performance patterns. 

I study two broad questions using this framework. The first is how players should 

select strategies to play, given only noisy estimates of the payoffs in a game. I identify 

logit equilibrium as the champion for this task, and present considerable evidence that this 

method performs well in a variety of contexts. I also provide evidence that rational players 

have a preference for making broader predictions of opponent play as payoff uncertainty 

is increased. The second question I consider is how players should explore a large game, 

given limits on the amount of payoff information they are allowed to observe. I evaluate 

several exploration policies on two different analysis tasks, and show that they are able to 

exploit various types of structure to make good use of the available payoff information. A 

novel method I propose offers substantial improvements over previous approaches on an 

equilibrium identification task. A more detailed overview of the thesis appears in Section 1.4, 

3 
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after I have introduced some background material. 

1.1 Game Definitions and Terminology 

I begin by briefly introducing some necessary background material on the theory of games 

and relevant solution concepts. A thorough introduction to game theory can be found in 

many texts, such as Fudenberg and Tirole (1991) or Osborne (2004). 

1.1.1 Normal-Form Games 

The most basic representation of a game is the normal form (also known as strategic form). 

A game in the normal form specifies the players participating in the game, their possible 

strategies, and the payoff each player gets for each possible outcome. 

Definition 1 A normal-form game consists of a tuple {I,S,U} defining the set of players 

I of size n, sets of actions for each player S = {Si}, and a payoff function for each player, 

U = {ui(s)}. The payoff function gives the value that a player receives for each possible 

combination of strategy choices by all players, s = [si,... , sra]. 

The elements of each player's strategy set S{ e 5,- are called pure strategies. Players may 

also use randomized mixed strategies, o-,- e £,, which specify a probability distribution over 

pure strategies. Pure strategies are also mixed strategies. A joint selection of strategies 

for all players in a game is a strategy profile, denoted s — [s\,... ,sn] for pure strategies 

and a — [G\ , . . . , an] for mixed strategies. The notation S-i (respectively, o~_,) refers to a 

profile of strategies for all players except player i. A homogeneous profile is one in which 

all players use the same strategy.' 

Normal-form games are played once, and each player makes its strategy choice without 

knowledge of the other players' choices (i.e., simultaneously). The description of the game, 
1TTiis requires all players to have the same set of strategies, but does not require that players have identical 

payoffs for these strategies. 
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< /,5, U >, is generally assumed to be common knowledge among all players. Common 

knowledge is a strong condition that implies that all players know the game, know that all 

other players know the game, know that the other players know that they know the game, 

and so on in an infinite hierarchy of beliefs. 

u 
D 

L 
3,3 
4,0 

R 
0,4 
1,1 

Table 1.1 An example of a matrix representation of a normal-form game. This game is a Prisoner's 
Dilemma, one of the most famous examples in game theory. 

Normal-form games are often represented using a payoff matrix, as shown in Table 1.1. 

This example has two players, a row and column player. The row player selects between 

actions U and D, and the column player selects between L and R. The first payoff listed in 

each cell is for the row player, and the second is for the column player. If the players choose 

strategy profile [U,R] the row player receives a payoff of 0 and the column player receives a 

payoff of 4. 

An important special case is symmetric games, in which all players have the same strategy 

choices and identical payoff functions. That is, Si = •• • = Sn, and «;($,•, s-i) — UJ(SJ,S-J) 

when Si = SJ for all pairs of players i, j € /. There are no distinct player roles in a symmetric 

game, and the payoffs depend only on the strategies selected and not the identity of the play­

ers. An important advantage of symmetric games is that they have far fewer distinct strategy 

profiles than general games. This can be exploited to reduce the size of the representation 

and design more efficient solution algorithms (Papadimitriou and Roughgarden, 2005). 

1.1.2 Bayesian Games 

The normal-form game model makes the strong assumption that the game is common knowl­

edge among all players. Of course, in many interesting situations, players are uncertain 

about aspects of the game and may not share the same information. Game of incomplete 

information, or Bayesian games, were introduced by Harsanyi (1967-1968) to model uncer-
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tainty in games. In particular, players may have private information about the payoffs in the 

game, and may be uncertain about what other players know about the payoffs.2 

Bayesian games introduce the notion of a player's type, which encapsulates all of the 

private information a player has about the payoffs. The payoff functions in a Bayesian 

game depend on both the strategy selections (as in normal-form games) and the types of all 

players. In addition, each player may condition its strategy choice on its type. The type of 

each player is determined randomly at the beginning of the game by a special player known 

as "Nature." Nature has no interest in the game, but selects the type of each player from a 

probability distribution and reveals it only to that player. The type distributions are generally 

assumed to be common knowledge among the players. This knowledge can be used by 

players to compute Bayesian beliefs about other players' types and the payoffs in the game. 

Poker is an intuitive example of a Bayesian game. Each player in the game has a type 

determined by its hand of cards, which is drawn randomly from a shuffled deck (represented 

by the move of Nature in the abstract game). Players bet based on their own hand, and the 

beliefs they hold about other players' hands. At the end of the game, payoffs are determined 

by a combination of each players' actions (bets) and the type of each player (its hand). 

1.2 Solution Concepts for Games 

Analyzing a game form to predict the outcome or to select a good strategy to play is a 

surprisingly subtle task. The game theory literature is rife with solution concepts, each 

with unique properties and motivations. Here I highlight only a few of the most important 

concepts, and those which play a role in later chapters. 
2Harsanyi argued in the original paper that uncertainty can be restricted to uncertainty about payoffs 

without loss of generality, since other forms of uncertainty can be represented as payoff uncertainty. 
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u 
D 

L 
6,2 
7,4 

M 
11,4 
10,10 

R 
5,5 
4,2 

Table 1.2 Example game 2, in normal form. 

1.2.1 Dominance 

One goal of analyzing a game is to identify the best strategy for a given player. In general, 

which strategy is best depends on the choices made by the other players, so this is not a 

simple optimization problem. However, in some cases a strategy may have a higher payoff 

than another strategy against all possible opponent strategy choices. 

Definition 2 A pure strategy si is dominated if there exists a strategy <T,- such that 

Ui(<Ji,s~i) > Ui(si,s-i) for all profiles of opponent strategies s~i G S_;. If the inequality is 

strict, Gi strictly dominates SJ. A dominant strategy is a pure strategy that dominates all of a 

player's other pure strategies. 

In example game 2 (shown in Table 1.2), the column player's strategy L is dominated 

by strategy M. Dominant strategies do not always exist, but they offer a compelling solu­

tion criterion when they do. Even when there is no single dominant strategy, the idea of 

dominance is often useful for pruning the space of strategies under consideration. 

1.2.2 Nash Equilibrium 

When a player does not have a dominant strategy, the next best alternative is to play a 

strategy that gives a high payoff against strategies other players are likely to choose. Rea­

soning about the other players to predict their choices becomes a key part of the analysis. 

Many solution concepts focus on identifying profiles of strategies that are in equilibrium 

with each other. These profiles are often considered more likely outcomes because they 

have desirable stability and consistency properties. Before delving into a discussion of 
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equilibrium I introduce the useful notions of deviation and best-response. Unless otherwise 

noted, a "deviation" always refers to a unilateral deviation by a single player. 

Definition 3 A player may deviate from any strategy profile by changing to any pure strategy 

in its strategy set. The set of profiles resulting from unilateral deviations from the profile 

a = \a\..., ah..., an] by player i is %{a) = {fa,... ,s'f,..., an]: s'{ e Si}. 

Definition 4 A best response for player i to a profile of strategies for the remaining players 

O-t is a pure strategy with maximal expected payoff against the profile. There may be more 

than one best response, but all have the same expected payoff. The set of best responses is 

given by &i{o-i) = {^ : ";(4> C-i) > «/(«*, <*-i)Vsi € Si}. 

A profile where every player simultaneously plays a best response (i.e., there are no 

beneficial deviations) is a Nash equilibrium (Nash, 1951). This is one of the most influential 

concepts in game theory, and many other solution concepts are refinements of this idea. 

Definition 5 A Nash equilibrium is a strategy profile o" with ^(oi, O-i) > Ui(s'{, G-i)for all 

players i and pure strategies s'{ € 5,-. If all strategies in the profile a are pure strategies, this 

is called a pure-strategy Nash equilibrium (PSNE). 

In example game 2 (Table 1.2), the profile [U,R] is a Nash equilibrium, as both devia­

tions result in a lower payoffs. Nash equilibrium has several appealing properties. Unlike 

dominant strategies, Nash equilibria are guaranteed to exist in most cases of interest. In 

normal-form games there will always be at least one mixed-strategy equilibria, though 

pure-strategy equilibria may not exist. Nash equilibria are consistent with rational behavior 

by the players in the sense that no player is making an obvious mistake (by failing to 

optimize or having inaccurate beliefs). In other words, no player would regret their decision 

after the outcome is revealed. The notion of regret leads to a natural generalization of Nash 

equilibrium. 
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Definition 6 The regret for a pure strategy profile, denoted e(s), is the maximum 

benefit any player could get by deviating to an alternative pure strategy: e(s) — 

max,-e/)S/€/5|As.i.[M,-(s,|-,)j—i) — ui(s)}. The regret for a mixed strategy profile containing at 

least one strategy that is not pure, denoted e(cr), is the maximum benefit any player could 

achieve by deviating to any pure strategy: e{o) — fliaXj-e/s/6S. [«,-(,$;, G-i) — Ui(c)}. Note 

that this definition applies to all strategy profiles, not just equilibrium profiles. 

This is a somewhat non-standard definition for regret in the case of pure-strategy profiles, 

where I exclude the original strategy from the calculation. The consequence of this is that 

negative values of regret are permitted for these cases, which I use in several places to make 

distinctions among pure Nash equilibria. A Nash equilibrium has no regret, by definition 

(e(<r) < 0). An approximate Nash equilibrium is a profile a with low regret; we say that a 

profile is an e-Nash equilibrium if it has regret e(o"). 

Despite its appeal, there are a number of well-known theoretical and practical difficulties 

associated with Nash equilibrium. Nash equilibrium does not necessarily define a unique 

solution, because games may have a multiplicity of equilibrium profiles. Many equilibrium 

refinements have been proposed to select among the set of Nash equilibria by applying other 

considerations. A few examples are trembling-hand perfection (Selten, 1975), proper equi­

librium (Myerson, 1978), sequential equilibrium (Kreps and Wilson, 1982), and evolutionary 

stability (Smith, 1982; Taylor and Jonker, 1978). 

Computing Nash equilibrium also presents computational difficulties. Known general 

solution algorithms (many of which are implemented in the Gambit software package (McK-

elvey et al., 2006)) do not scale well to large games.3 Theoretical complexity results indicate 

that efficient (polynomial time) algorithms are unlikely to be found (Daskalakis et al., 2006). 

There are persistent questions about the value of Nash equilibrium as a predictive model. 

Results from experimental studies show that in many circumstances, humans do not play as 

predicted by equilibrium models (Goeree and Holt, 2001; Erev et al., 2002; Mailath, 1998; 
3 As a rough guideline, games with more than a few players and/or hundreds of actions are problematic. 
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Erev and Roth, 1998; Sarin and Vahid, 2001). This has led to a number of proposed solu­

tion methods based on weaker rationality assumptions, including rationalizability (Pearce, 

1984; Bernheim, 1984) and forms of worst-case analysis (Aghassi and Bertsimas, 2006; 

Tennenholtz, 2002). I discuss several other approaches motivated by this observation in later 

chapters, including noisy equilibrium models and dynamic learning models. 

1.3 Empirical Models of Games 

Game-theoretic analysis typically begins with a game model specifying the players, strate­

gies, and payoffs. The model may serve different purposes, depending on the goals of the 

analyst. One common objective is to derive general insights into strategic reasoning, ideally 

with broad applications to many situations. Simple stylized games are often well-suited 

to this endeavor, since they may provide sharp examples of interesting phenomena. Such 

games are typically abstract, and not intended to precisely model any specific situation. For 

example, the Prisoner's Dilemma is a widely studied game that provides a simple example of 

how cooperative behavior can be obstructed by individual incentives. It is often introduced 

using an intuitive narrative about two imaginary prisoners offered a deal during interrogation 

by the law enforcement authorities. However, the point of analyzing the model is to better 

understand the general phenomenon of cooperation in games, rather than to offer guidance 

to the two imaginary prisoners. 

An analyst may also have interest in a specific game, whether to participate, offer advice, 

or for some other reason. For this purpose, the main concern is whether the model is an 

accurate representation of the strategic situation. Specifying a suitable model of a complex 

multi-agent system such as poker (Billings et al., 2002), RoboCup (Asada et al., 1999), 

or the Trading Agent Competition games (Wellman et al., 2001; Arunachalam and Sadeh, 

2005) is not trivial. It is telling that no exact game-theoretic solution (e.g., Nash equilibrium) 

has been reported for the full version of any of these games, despite substantial research 
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efforts to develop strategies for these games. In the next chapter I discuss at length the 

difficulties presented by the Trading Agent Competition Supply Chain Management game. 

One fundamental problem is that evaluating the payoffs for these games is costly because 

they are not given in a direct mapping of strategy profiles to payoffs. Consider the RoboCup 

domain, in which teams of robotic agents (or simulated robots) compete in variants of soccer. 

This game is defined by a set of rules that specify the legal moves and the objective—score 

more goals than the opponent. Each instance of the game is a sequence of legal moves, 

with some random elements (e.g., the direction the ball bounces). For any two teams of 

robots, it is not possible to say with certainty what the result of a game would be without 

actually playing the game.4 Playing games to estimate the payoffs requires both time and 

resources, even though the game is well-defined. Coupled with the very large number of 

possible strategies, the cost of determining payoffs makes it infeasible to derive a complete 

and exact model of the game for analysis. 

One approach for analyzing these games is to rely on the analyst to define an abstract 

game that is tractable and encapsulates the relevant strategic aspects of the game. However, 

it is not clear that the analyst's intuition will yield an accurate model of the game. There is 

also little hope for assessing the quality of the model if the process used to create the model 

is left undefined. 

An alternative approach is to use data (e.g., from simulations) to estimate a model of the 

game. Figure 1.1 outlines a high-level methodology for using empirical methods to build 

and analyze game models, which I refer to as empirical game-theoretic analysis. The basic 

stages in the analysis are: 

1. Select an initial set of candidate strategies for each player 
2. Use simulation to estimate the payoffs in the game 
3. Apply game-theoretic methods to analyze the estimated game 
4. Refine the analysis, either by running additional simulations or adding new candidate 

strategies (optional) 

I describe each stage briefly here, but provide describe them in more detail in the context 
4If it were, the tournament competitions would be much less interesting! 
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Figure 1.1 Steps in generating and analyzing an empirical game model. 

of an application in the next chapter. In the first stage, the analyst chooses a set of candidate 

strategies, which may be relatively small compared to the full strategy space. This restriction 

is often necessary if the game is very large to keep the costs of estimating and analyzing the 

empirical game manageable. Additional candidates may be added as the analysis progresses. 

In the second stage, evidence is gathered to estimate the payoffs for profiles of candidate 

strategies. For example, instances of the game may be simulated using the candidate strate­

gies to sample the payoffs for a profile. These payoff estimates can be used as the basis for 

game-theoretic analysis, such as finding a Nash equilibrium of the estimated garnet Based 

on the results of this analysis, the analyst may seek new evidence or consider additional 

5Depending on the type of analysis desired, it may not be necessary to have estimates for all of the strategy 
profiles. 
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candidate strategies. 

An early version of this empirical approach was introduced by Walsh et al. (2002), who 

computed what they called a heuristic payoff table to study strategies for two games, a 

continuous double auction and an automated dynamics pricing game. They studied sev­

eral candidate strategies, based on methods found in the literature. A series of papers by 

MacKie-Mason, Osepayshvili, Reeves, and Wellman further develop this methodology, 

primarily in a market-based scheduling domain (MacKie-Mason et al., 2004; Osepayshvili 

et al., 2005). Reeves (2005) presents the most complete description of the methodology, 

as well as applications to several additional domains. I describe some additional studies 

that apply similar methods in Section 2.4. This literature and the application I present in 

Chapter 2 demonstrate the value of this methodology for analyzing a variety of complex 

strategic phenomena. However, there are many open questions about how best to implement 

the various task in empirical game-theoretic analysis, including: 

• How should the candidates strategies be selected? 
• When should additional candidate strategies be added? 
• Which profiles should be sampled to best estimate payoffs in the empirical game? 
• What solution methods should be used on estimated games? 

• What is the degree of confidence in the solution? 

While the literature contains examples of ways to answer each of these questions, there 

is at best sparse evidence to discern which methods are most effective. The answers may be 

complex, and depend on a variety of factors including the properties of the game and the 

methods available for gathering information about the game. One of the contributions of 

this thesis is a principled methodology and criteria for evaluating these methods, leading 

to new insights into the effectiveness of different techniques in a various contexts. I focus 

particularly on the questions of which solution methods should be applied to estimated 

games (Chapter 4), and which profiles should be sampled to support different analysis tasks 

(Chapter 5). 
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1.4 Thesis Overview 

Many of the results presented in the sequel derive from and extend published papers, in some 

cases with several co-authors. I overview the main topics of each chapter, and highlight the 

relevant publications. Chapter 2 presents an application of empirical game-theoretic analysis 

to the Trading Agent Competition Supply Chain Management game. This serves several 

purposes, illustrating some challenges of strategic reasoning in complex multi-agent systems, 

introducing the empirical methodology, and providing evidence that the methodology can 

produce relevant insights in very complex domains. The material in this chapter is based on 

work presented by Jordan et al. (2007), which builds on our earlier work applying similar 

methods to reason about various strategic aspects of the game (Wellman et al., 2005a; 

Vorobeychik et al., 2006). In addition, many individuals have contributed to the design of 

our agent for this game over several years of tournament competition (Kiekintveld et al., 

2004, 2006a, 2008). 

The broad goal of the remaining chapters is to develop and evaluate specific methods 

for empirical game-theoretic analysis. One of the most salient concerns of relying on 

empirical game models as a basis for decision making is that they are typically noisy and/or 

incomplete representations of the game. In Chapter 31 present a meta-game that models 

strategy selection using noisy empirical games (Kiekintveld and Wellman, 2008). Based on 

this model, I develop an experimental framework for evaluating strategy selection methods 

(i.e., meta-strategies). This approach is particularly useful for assessing the performance of 

meta-strategies across varying conditions, such as different magnitudes of noise. I conclude 

the chapter by demonstrating this framework to analyze strategy selection based on naive 

equilibrium analysis. The consequences of noise in the observed game are very apparent in 

this simple experiment. 

Chapter 4 builds on material from Kiekintveld and Wellman (2008). I apply the 

framework from Chapter 3 to study three families of parameterized meta-strategies. Each 

meta-strategy forms a distributional prediction of play, predicting the probability that oppo-
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nents will select each possible combination of pure strategies. I study meta-strategies that 

make a range of predictions defined by varying a single parameter in each case, the effect of 

which interpolates the prediction between an uninformed prediction and a Nash equilibrium 

prediction. I test the performance of these algorithms experimentally across several classes 

of games, varying the payoff information that the meta-strategies have available for making 

predictions. My first experiment shows a systematic relationship between the gross level of 

payoff information available and the precision of the best predictions of opponent play. The 

second provides a comprehensive comparison of the three meta-strategies, and identifies 

one meta-strategy as the current champion for this task. 

Chapter 5 addresses the problem of deciding which profiles of a game to explore in 

cases where it is not possible to observe the payoffs for all profiles. The germination of this 

work was a study of chaturanga (4-player chess) using empirical game-theoretic methods 

(Kiekintveld et al., 2006b). I describe a parameterized strategy space for chaturanga and 

examine some evidence for structure in this strategy space. The remainder of the chapter 

evaluates several families of exploration policies on game classes with known structural 

properties. I test these policies for both an equilibrium confirmation task and the strategy 

selection task, applying the meta-strategy analysis methods of Chapter 3 to evaluate the 

latter. 
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Chapter 2 

Empirical Game-Theoretic Analysis 
Applied to the TAC Supply-Chain Game 

Research in multi-agent systems often considers complex interactions among sophisticated 

agents. Analyzing these systems is challenging for various reasons, including large numbers 

of players, large strategy spaces, and uncertainty. Finding exact game-theoretic solutions 

(e.g., equilibria) is infeasible or impractical in many instances. However, it is possible to 

make progress in these domains by applying experimental evaluation. The paradigm of 

empirical game-theoretic analysis provides a foundation for such experimentation, drawing 

on the insights and tools of game theory. 

The Trading Agent Competition is an annual event that challenges researchers to design 

strategies for market games. I focus here on the Supply Chain Management game. Despite a 

great deal of investigation by researchers since the game was introduced in 2003, there is 

no known optimal strategy or equilibrium of the game, and no exact solution of this form 

appears imminent. I illustrate the methodology of empirical game-theoretic analysis using 

this domain, demonstrating the viability of this approach for scaling game-theoretic analysis 

to domains that are not amenable to standard analytic approaches. 
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2.1 The TAC Supply Chain Management Game 

The Trading Agent Competition provides common domains and infrastructure for multi-

agent systems research.1 The competition routinely attracts attention from a diverse group 

of researchers spanning academia and industry, with strong international participation. The 

first competition in 2000 featured a travel shopping domain (Wellman et al., 2001). The 

supply chain management game (TAC SCM) was added in 2003 (Arunachalam and Sadeh, 

2005; Eriksson et al., 2006). I provide a brief description here, sufficient to understand the 

material in this chapter. The interested reader is encouraged to refer to Collins et al. (2006) 

for the canonical game specification. 

2.1.1 Game Description 

In the SCM game six fully autonomous manufacturing agents compete to maximize their 

profits in a simulated supply chain for personal computers (PCs). They manage component 

procurement, PC sales, and factory operations for 220 simulation days, each lasting 15 

seconds. There are 16 types of PCs, defined by compatible combinations of 10 different 

components including motherboards, processors, memory, and hard drives. Each agent is 

endowed with an identical factory capable of producing all types of PC, but with limited 

overall production capacity. Inventory is subject to storage costs, and there is an interest rate 

for capital. At the end of the game, agents are evaluated base on their total profit. A visual 

overview of the supply chain configuration is given in Figure 2.1. 

Agents must negotiate in markets to purchase components from suppliers and sell their 

finished PCs to customers. Negotiations in both the component and PC markets take place 

using a request-for-quote (RFQ) mechanism. Suppliers and customers are independent 

agents, with behaviors defined in the game specification and implemented by the server. 

Suppliers have a limited production capacity that changes each simulation day according to 

'See h t t p : //www. s i c s . s e / t a c and h t t p : / / t r a d i n g a g e n t s .org for background informa­
tion about the competition, game specifications, tournament results, and other related information. 
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Figure 2.1 Diagram overviewing the configuration of the TAC SCM game. 

a mean-reverting random walk. They respond to requests with offers if they have available 

capacity, pricing offers roughly based on the fraction of their capacity they have available. 

As demand for components increases, suppliers commit more capacity to orders, and prices 

generally rise. A set of customer requests is generated each day by the game server, with 

the number of requests reflecting the demand level. Demand varies each day according to a 

stochastic process with a trend parameter. The customer requests are treated as simultaneous 

first-price sealed-bid auctions. 

Manufacturers must make decisions based on limited information about the state of the 

other agents in the supply chain, including the underlying supplier capacities and customer 

demand. The decisions of other manufacturers play an integral role in determining market 

conditions, so uncertainty about the strategies employed by the other agents is a key aspect 
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of the game. 

2.1.2 Strategic Interactions in TAC SCM 

The performance of any manufacturing agent in the TAC SCM game depends on the choices 

of the other agents, and this interdependence has played a pivotal role in the competition. 

One dramatic example is the case of early component procurement during the first two years 

of the TAC SCM competition. There was a very powerful incentive in first version of the 

game to place component orders before other agents, since early orders cause the price for 

later orders to increase. Agents gradually migrated towards very aggressive procurement 

strategies during the early tournament rounds, and eventually the majority of component 

purchases were occurring on the very first day of the game. However, this had a mutually 

destructive effect on agent profits, because these purchases were made with essentially no 

information about what the customer demand conditions were going to be. 

We conducted an empirical game-theoretic analysis of this phenomenon using variations 

of our own agent, Deep Maize (Wellman et al., 2005a). Our experiments verified that the 

aggressive policies observed were rational (in a limited sense), but were mutually destructive 

to manufacturing profits. However, a "preemptive" strategy introduced by Deep Maize in 

the final round neutralized the aggressive behavior and resulted in a new equilibrium in 

which profits for all manufacturers (not only Deep Maize) were higher. 

The emphasis on very early procurement was considered a design flaw by the TAC SCM 

community, and revised rules were introduced to mitigate the issue. However, the 2004 

changes that focused on introducing storage costs were unsuccessful in effecting the desired 

change in agent behavior (Kiekintveld et al., 2006c). We conducted further experiments on 

possible settings of this storage cost parameter using empirical mechanism design. This 

analysis showed that no reasonable setting for the storage cost would have been likely to 

reduce incentives for early procurement to desirable levels (Vorobeychik et al., 2006). A 

further redesign the following year overhauled the supplier model and substantially reduced 
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incentives for the extreme early procurement policies. This anecdote demonstrates both the 

inherent strategic nature of the TAC SCM game, and the difficulty of anticipating likely 

behaviors in the game (even for the designers of the game rules). 

2.1.3 Challenges for Strategic Analysis 

The fundamental challenges for analyzing strategic choices in TAC SCM are common to 

most real domains and applications of multi-agent systems. A strategy for playing TAC 

SCM (i.e., a manufacturing agent) must specify choices for a large number of distinct 

decisions, conditional on several types of observations. The strategy space defined by the 

set of all possible choices for these decisions is immense. Consider the number of ways 

to bid on the set of customer requests for a single simulation day. During periods of low 

customer demand, there are roughly 100 customer requests each day, and agents may bid 

any integer value up to the reserve price—roughly 2000 distinct values. There are 2000100. 

distinct sets of bids that the agent could place on the set of requests. In other words, there 

are more than 10300 ways for the agent to bid on the customer requests for a single day, even 

during periods of low demand. A complete agent strategy must specify customer bids for 

the entire game, as well as strategies for procurement and manufacturing activities.Adding 

these additional decisions can only increase the size of the strategy space, so the number of 

complete agent strategies is extremely large.2 

Enumerating the strategy space for TAC SCM is clearly infeasible, and the strategies 

themselves are too complex to represent using tabular mappings from observations to actions. 

Instead, strategies are represented in compact form as algorithms, i.e., software agents that 

specify how to compute decisions. Tournament agents often comprise thousands of lines 

of computer code. An important implication of this for analyzing the strategy space is that 

there is a computational cost for executing the strategy. 

2It is difficult to provide a precise measure of the number of complete strategies, due to stochastic elements 
in the game, and because some decision variables are not explicitly bounded. 
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The rales for TAC SCM are also a compact representation of the game. The specifica­

tion comprises roughly 20 pages of text, which is defines the behavior of the game server 

implementation. To play an instance of the game, agents connect to the game server and 

communicate their own decisions for each simulation day, while the game server responds as 

described in the game specification. For any given set of agents, the game can be simulated 

to determine the sequence of messages between the server and the agents, and the final 

profits. The game has stochastic elements, so these payoffs represent only a sample from 

the distribution of payoffs for these agents. To achieve an accurate estimate of the expected 

payoffs, many simulations are necessary. The key point is that there is no way to discover 

the payoffs for a set of agents without actually running simulations; there is no simple 

formula for computing the payoffs for a set of agents. The computational costs associated 

with running simulations limits the amount of payoff information it is possible to gather. 

As a consequence, any available model of the game is necessarily a noisy and incomplete 

representation of the true game. 

2.2 Empirical Game Modeling for TAC SCM 

Like many other games, TAC SCM cannot be solved directly using analytic methods. To 

evaluate strategy choices, we must rely on experimental evidence. The TAC tournament is 

one important source of evidence for evaluating the quality of agent strategies. Tournaments 

offer a number of advantages, but one of the most important is the realistic strategic environ­

ment. There is a real potential to encounter unanticipated strategies in a tournament where 

agents are introduced by a diverse pool of participants. 

However, tournament evaluation is limited in some important ways, both theoretical 

and practical. Tournament play consists of a limited number of game instances, and not 

all tournament results are statistically significant. This also limits the number of strategy 

variations designers can test in tournament conditions. There are many possible ways of 
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matching agents (i.e., strategy profiles) that are never explored in a tournament setting. To 

some degree, this limits the conclusions that may be drawn from tournament results. For 

instance, it is generally not possible to identify equilibrium strategies using a tournament 

(even for the restricted set of tournament agents). Other issues included the lack of complete 

documentation of the participating agents, and the possibility that tournaments distort the 

incentives of the game away from strict profit maximization to focus on the value of a 

tournament ranking. 

Many published accounts of agents for TAC supplement the tournament results with 

controlled experiments designed to test specific design choices (He et al., 2006; Pardoe 

and Stone, 2006; Benisch et al., 2006). Controlled experiments are also used extensively 

for testing potential strategies and tuning parameters leading up to the tournament. Such 

experiments often fix a set of opponents to provide competition and vary one or more aspects 

of a particular agent's strategy. Though it is possible to use the "dummy" agents supplied by 

the game server, using agents from previous competitions provides an environment that is 

closer to tournament competition. Many teams voluntarily release binary versions of their 

agents after each tournament, and the binaries are collected in a public agent repository.' 

We follow the approach outlined in Section ] .3 to create empirical game models for 

exploring strategic interactions in TAC SCM. This source of experimental evidence comple­

ments the tournament results, and offers a more principled means for experimental design 

than simply selecting arbitrary opponents. The discussion that follows is not intended to 

argue for specific approaches for building or analyzing an empirical game model, but to 

offer a concrete example of how the general framework can be applied to achieve insights 

into behaviors in very complex domains. 

3The repository is hosted at h t t p : / /www . s i c s , s e / t a c / shcwagen t s . php. 
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2.2.1 Reducing the Game 

We begin by restricting the game in several ways to reduce the size of the game and make 

estimating the payoffs more manageable. First, we exploit the fact that all manufacturers 

in TAC SCM are identical and consider the symmetric game. In addition to reducing the 

number of profiles that must be simulated, we can reduce sampling noise by averaging 

the payoffs for all identical strategies in a game instance. We also reduce the number of 

players in the game from 6 to 3 using the hierarchical player reduction technique developed 

by Wellman et al. (2005b). Each player in the reduced 3-player game effectively selects a 

strategy for a pair of players in the original game, so the reduced profile [1,2,3] maps to 

[1,1,2,2,3,3] in the original game. Game simulations still use six manufacturing agents, 

but there are always at least two identical agents. This reduction empirically yields good 

approximations with significant computational savings (Wellman et al., 2005b; Reeves, 

2005). 

Even using symmetry and player reduction, the strategy space is still far too large to 

explore exhaustively, so we focus on small sets of candidate strategies. While candidates 

could be chosen for a variety of reasons, it is natural to consider tournament agents available 

in the repository, as well as parameterized variations of existing agents as a starting point. 

Walsh et al. (2002) coined the term heuristic strategy analysis to describe their analysis of a 

restricted space of strategies. Armantier et al. (2007) use restricted strategy spaces as the 

basis for a method of approximating Bayes-Nash equilibrium. They refer to the game where 

players select only the restricted strategies as the constrained game, and equilibrium of the 

constrained game as constrained equilibria. Under certain conditions, the equilibria of a 

sequence of constrained games will converge to equilibria of the full game. In the sequel, I 

will use the terminology of constrained games and constrained equilibria to refer to games 

with restricted strategy spaces. 

It is natural to ask what (if anything) can be inferred from analysis of arbitrarily con­

strained games. After all, any analysis that considers only a subset of the strategies runs the 

23 



www.manaraa.com

risk of ignoring promising alternatives. First, observe that the regret for a strategy profile in 

a constrained game is a lower bound on the regret for the same strategy profile in the full 

game. This immediately implies that any profile that is not an equilibrium of the constrained 

game cannot be an equilibrium of the full game. A constrained equilibrium may be an 

equilibrium of the full game, but this can be confirmed only by checking the deviations 

to all remaining strategies in the full game. There is a degree of supporting evidence for 

constrained equilibria, as a result of the deviations tested within the constrained game. If 

we suppose (conservatively) that all deviations from a given profile are equally likely to be 

beneficial, a constrained equilibrium is more likely to be an equilibrium of the full game 

than any profile that is not part of the constrained game.4 

2.2.2 Estimating the Payoff Matrix 

We use simulation to estimate the payoffs in the constrained game for the sets of candidate 

strategies. Each simulation requires an instance of the game server and six agents to control 

the manufacturers. To ensure fair allocation of computational resources, we allocate one 

CPU core for each agent and one for the game server. Each game instance runs for one 

hour, so each simulation requires approximately 7 hours of CPU time. The game server 

produces a log file for each game, containing detailed information about all messages and 

transactions in the game. After screening for failed simulations5 we extract scores for each 

agent from the game logs. We use the statistical method of control variates (Ross, 2002) 

to reduce the variance in the scores, effectively adjusting scores to account for the level of 

customer demand observed in each game instance. This method was initially applied in 

Wellman et al. (2005a). Another of variance reduction based on modifications to the game 

4This reasoning is even stronger if the strategies in the constrained game are "better" than the average 
strategy in the full game, a reasonable assumption in many cases. For instance, it would be very surprising for 
a randomly-generated TAC SCM strategy to be a beneficial deviation from a profile of tournament agents. 

5Games are scratched if any agent did not communicate with the server for six or more days. This screens 
for problems such as communication failures and crashed agents, while allowing some normal behaviors 
where agents do not communicate. Failure rates are generally very low in our computing environment. 

24 



www.manaraa.com

server has recently been developed by Sodomka et al. (2007). 

Estimating a complete payoff matrix for even a modest number TAC SCM strategies 

is very expensive. Even using symmetry and player reduction, collecting 30 samples for 

each profile in a 3-player version of the game with 5 pure strategies requires over 7000 

CPU-hours. Fortunately, it is simple to parallelize the process of simulating a game matrix. 

This allows us to harness substantial resources provided by a computing cluster at the 

University of Michigan. We manage simulations using a centralized server to submit and 

track jobs, gather game logs, and run post-processing tasks that extract scores and build 

payoff matrices. The current implementation supports only relatively simplistic methods 

for determining which simulations to run, though more intelligent search methods such as 

those studied in Chapter 5 could potentially be used to improve this process. On the cluster, 

a set of scripts automatically configure the game server and agent strategies for each game 

instance requested. To date we have collected over 25,000 games for TAC SCM using this 

infrastructure. 

There is one important caveat to bear in mind when comparing our simulation results 

to the tournament results. Tournament agents can maintain state between game instances, 

so they can adapt within a round of tournament games. Several agents take advantage of 

this opportunity, including the top-scoring agent from both 2005 and 2006 tournaments, 

TacTex (Pardoe and Stone, 2006,2008). Our simulations are isolated game instances, with 

no concept of a round of games. Therefore, the strategies we consider can adapt only within 

a game instance. 

2.3 Game-Theoretic Analysis of TAC SCM 

Once we have created an empirical model of the game using simulation evidence, we 

analyze the model using game-theoretic principles. In this section I present results for 

tournament agents from the 2005 and 2006 competitions, all of which are publicly avail-
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able in the agent repository. I highlight several methods that we have found useful for 

analyzing the data generated by our experiments, including ranking strategies based on 

performance in an equilibrium context and a graphical depiction of the profile stabilities and 

best-response correspondence. These results supplement the tournament results in several 

ways, demonstrating the value of the empirical game-theoretic paradigm. 

2.3.1 Analysis of SCM 2006 Agents 

The agents that competed in the 2006 TAC SCM finals are listed in Table 2.1, along with the 

scores they achieved in each round of the TAC tournament. Binaries for five of these agents 

were released to the TAC SCM agent repository: 

• TacTex (Tx) (Pardoe and Stone, 2008) 
• PhantAgent (Ph) (Stan et al., 2006) 
• Deep Maize (Ds and Df) (Kiekintveld et al., 2006a) 
• Maxon (Ms and Mf) 

• MinneTAC (Mt) (Collins et al., 2007) 

For Deep Maize and Maxon, the versions that played in both the semi-final and final 

round are available.6 The MinneTAC agent available played in the semi-final round; accord­

ing to the release statement, changes introduced for the final version resulted in significantly 

worse performance. In this section we present data for five of the seven available agents, 

including both versions of Deep Maize but excluding both Maxon agents.7 The full 

symmetric game (reduced to 3 players) for these five agents has 35 unique profiles. Our 

empirical estimate for this payoff matrix is based on over 1100 simulated games, with a 

minimum of 15 samples for a profile, and typically at least 30. 

Figure 2.2 provides a concise summary of the game data in visual form, depicting both 

the regret for each pure strategy profile and the best deviation from each profile. Each node 

in the graph represents a profile of three agents, each of which controls two manufacturers 
6 A significant change was made to Deep Maize's procurement policy for the start of the game between 

the semi-final and final round. 
7Maxon was the last agent to be released, and we do not have simulation data for all of the necessary 

profiles to include the two variations of this agent in this part of the analysis. 
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Agent 
TacTex 
PhantAgent 
DeepMaize 
Maxon 
Botticelli 
MinneTAC 

Affiliation 
U Texas 
Politech U Bucharest 
U Michigan 
Xonar Inc. 
Brown U 
U Minnesota 

Final 
5.85 
4.14 
3.58 
1.75 
0.48 

-2.70 

Semi-Final 
7.55 [2] 
5.71 [2] 
6.46 [1] 
4.08 [1] 
1.94 [1] 
2.06 [2] 

Quarter-Final 
7.48 [B] 

17.37 [C] 
9.61 [A] 
17.74[D] 
0.83 [A] 

13.45 [C] 

Seeding 
13.73 
12.56 
16.60 
10.63 
4.21 
9.59 

Table 2.1 TAC SCM-06 finalists, with average scores ($M) from seeding through final rounds 
(semi-final and quarter-final groups in brackets). 

in the full game. The placement of the nodes is based on the regret level for the profile, e(s). 

The concentric circles contain nodes within a range of £ values, with lower values of e closer 

to the center of the graph. The profiles in the innermost circle are the most stable—either 

Nash equilibria or close approximations. The edges between the nodes represent the best 

deviation from each profile (the best response with the greatest benefit, over all players). A 

solid arrow means that the benefit to deviating is significantly greater than zero for p < 0.05. 

In the graph we can see that there is a single Nash equilibrium in pure strategies, 

[Ds,Ph,Tx], which has no outgoing edges signifying beneficial deviations. There is also 

an approximate equilibrium [Ds,Ds,Tx] with a small (statistically insignificant) benefit of 

0.09M for deviating to the equilibrium profile. We applied replicator dynamics (Taylor 

and Jonker, 1978; Reeves, 2005) to search for mixed-strategy equilibria, starting from 

mixtures generated at uniform random. In all cases the dynamics converged to the sym­

metric Nash equilibrium mixture of TacTex, PhantAgent, and Deep Maize SF, with 

probabilities [0.254,0.188, 0.558]. This is also the equilibrium identified in the limit by the 

logit equilibrium solver in Gambit (McKelvey et al., 2006; Turocy, 2005). 

Table 2.2 presents several additional statistics about the deviations in the 2006 game. 

Percent positive deviations is the fraction of possible deviations to the agent that result in a 

net benefit. Best Deviation is the number of instances where deviating to the agent was the 

most beneficial deviation. Mean Deviation and std. error reflect the average benefit ($M) 

for deviating to this agent, which may be negative. Deviations to TacTex, PhantAgent, and 
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Figure 2.2 Deviation and profile stability analysis for the 2006 tournament agents. 

Agent 
TacTex 
Deep Maize SF 
PhantAgent 
Deep Maize F 
MinneTAC 

% Positive 
Deviations 

61.67 
63.33 
60.00 
53.33 
11.67 

Best 
Deviation 

18 
5 
8 
3 
0 

Mean 
Deviation 

1.45 
1.43 
0.89 
0.88 

-4.67 

Std. 
Error 
5.91 
4.68 
4.77 
4.62 
6.41 

Table 2.2 Deviation statistics for the game containing SCM 2006 tournament agents. 

DeepMaize SF are beneficial in at least 60% of the cases. The mean value for deviating is 

highest for TacTex and DeepMaize SF, and TacTex is the best deviation most frequently. 

The three agents comprising the Nash equilibrium profiles are nearly indistinguishable in 

this analysis. 

A striking feature of the game data is that agents tend to perform poorly against exact 

copies of themselves. This affects all agents to some degree, though the magnitude does 
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vary across different agents. All of the homogeneous profiles that consist of a single strategy 

used by all players are among the least stable pure strategy profiles (they are in the outer 

rings in Figure 2.2). We observe the same phenomenon in a similar analysis of agents 

from the 2005 tournament (Jordan et al., 2007). An intuitive and interesting explanation 

for this phenomenon is that it reflects a congestion effect, in which agents compete to fill 

the same market niches and exploit the same opportunities. Multiple copies of the same 

agent will tend to concentrate in the same market niches, lowering profits due to the increase 

in competition. Some of the forms of interference between identical agents may be due to 

relatively domain-specific or agent-specific issues, such as using particular lead times for 

ordering components or bidding on customer orders in a particular manner. Other forms 

of interference are more general, such as making similar predictions and using similar 

weightings of production across market segments. 

The tendency for identical agents to perform poorly does raise some questions for our 

analysis, and particularly the use of player reduction as an approximation of the game. 

Player reduction makes our analysis especially sensitive to this issue, as agents will always 

play against at least one copy of the same agent. Presumably, TAC entrants design their 

agents with tournament play in mind, and so may not be concerned about the performance 

of their agents with copies of themselves in the environment. It is not surprising that agents 

not designed with self-play in mind perform relatively poorly in this situation. However, 

there are also reasons why self-play may be an important indication of agent performance 

that is neglected by tournament analysis. Agents that perform poorly in self-play may 

be particularly susceptible to imitation, and may not have a sustainable advantage over 

competitors as others incorporate successful elements of the strategy into their own agents. 

Another interesting result of the 2006 game analysis is that the semi-finals version of 

Deep Maize outperforms the version from the final round. We based our decision of which 

version to use on intuitive strategic reasoning, making informed guesses about what the 

other finalists were likely to do, and further guesses about what the best response to this 
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strategic environment would be. The evidence from our game-theoretic analysis strongly 

suggests that this reasoning led to the wrong choice between these alternatives. While it 

would not have been possible to gather the exact data presented here before the tournament 

since many of the agents in the analysis were not released until after the tournament, it 

would have been possible to conduct similar experiments using older tournament agents and 

other variations of Deep Maize. The empirical evidence from these experiments would 

have given us a firmer basis for reasoning about the alternative strategies, and may have 

allowed us to avoid the apparent mistake in selecting the version that appeared in the final 

round. This is anecdotal evidence, but it does suggest that there is potential for guiding 

strategy selection in the SCM game using empirical game-theoretic methods. 

2.3.2 Analysis of Combined 2005 and 2006 Agents 

One of the exciting opportunities afforded our empirical analysis methodology is to consider 

combinations of agents not observed during tournament play, including agents from different 

years. In this section we consider eleven tournament agents available from the repository 

that participated in either the 2005 or 2006 TAC SCM competition, all of which are listed in 

Table 2.4. The data set for this analysis consists of roughly 10,000 simulated games using 

both the 2005 and 2006 SCM game servers. There were two minor rule changes between 

2005 and 2006. Under 2006 rules, the identity of opposing agents is revealed at the start of 

the game, and the reputation mechanism for suppliers was slightly modified. Agents from 

2005 are compatible with the new server, but may be at a disadvantage because they were 

not designed for the new rale set.8 

One of the interesting questions we can ask using this data set is whether agents are 

improving in subsequent competitions. A test for this hypothesis is whether the strongest 

2006 agents are beneficial deviations from the equilibrium context of the game restricted 

Comparisons of identical profiles for which we have data for both the 2005 and 2006 servers show small 
but statistically significant differences in performance. 
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Background Context Deviation Gain (e) 
05 Agent 
Deep Maize 
Mertacor 
PhantAgent 
TacTex 

Mixture 
0.083 
0.431 
0.314 
0.172 

06 Agent 
PhantAgent 
TacTex 
Deep Maize SF 

Server Rules 
2005 

5.33M 
5.07M 
4.22M 

2006 
6.57M 
4.73M 
4.56M 

Table 2.3 Deviation benefit comparison for top 2006 agents in the context of a symmetric mixed 
Nash equilibrium of top 2005 agents, using both 2005 and 2006 server rules. 

to include only 2005 agents. We find a symmetric Nash equilibrium for the 2005 agent set 

including Deep Maize-05, Mertacor-05, PhantAgent-05, and TacTex-05.9 Using this 

equilibrium of 2005 agents as the background context, we test deviations to three of the top 

2006 agents. The results are given in Table 2.3, along with the probabilities of each 2005 

agent in the equilibrium context. We repeated this experiment using both the 2005 and 2006 

game servers to run the simulations. Each of the 2006 agents is a beneficial deviation from 

the 2005 equilibrium, regardless of the server rales. This evidence offers strong support 

for the hypothesis that the top agents improved from 2005 to 2006. In the subgame that 

includes the background agents and Deep Maize-06 SF, Deep Maize-06 SF is the sole 

survivor of iterated elimination of dominated strategies, providing even stronger evidence 

for improvement in this agent. 

We extend idea of testing deviations from a particular background context to provide an 

alternate means of ranking agents. Specifically, we rank agents according to the payoff they 

would receive as a deviation from a symmetric mixed-strategy equilibrium. This ranking 

supplements the tournament results in that it provides a complete ordering and facilitates 

comparisons between arbitrary sets of agents, including agents that participated in different 

years of the competition. Many of the experimental designs used by TAC participants to 

test agent variations share the idea of testing against a fixed background context; the key 

distinction we make is using a game-theoretic criteria to select which background context is 

9The support of the mixed strategy equilibrium of the full set of 2005 agents we have data for also includes 
MinneTAC. This agent has very low probability in the equilibrium, and omitting this agent reduces the data 
required for our analysis considerably. 
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Agent 
TacTex 06 
PhantAgent 06 
Deep Maize 06 SF 
Mertacor 05 
Deep Maize 06 F 
Maxon 06 S 
MinneTAC 05 
PhantAgent 05 
Deep Maize 05 
MinneTAC 06 
TacTex 05 

Deviation 
Gain 

0 
0 
0 

-0.57 
-0.95 
-1.03 
-1.23 
-1.51 
-3.18 
-3.48 
-5.96 

Tournament Scores 
Finals 05 

n/a 
n/a 
n/a 

0.55 
n/a 
n/a 

-0.31 
n/a 

-0.22 
n/a 

4.74 

Finals 06 
5.85 
4.15 

n/a 
n/a 

3.58 
n/a 
n/a 
n/a 
n/a 

-2.70 
n/a 

Table 2.4 Ranking of eleven TAC SCM agents based on deviations from an equilibrium context, 
coupled with tournament results (in $M). 

most relevant. 

In Table 2.4 we present a ranking of eleven agents from 2005 and 2006 in the context of 

the symmetric mixed Nash equilibrium of the 2006 game.!0 The equilibrium is a mixture 

of TacTex, PhantAgent, and Deep Maize SF, with probabilities [0.254, 0.188, 0.558]. 

All agents are ranked based on the benefit of deviating to the agent from the equilibrium 

context. When applicable, the table also lists the tournament results for the agent (final 

round only). None of the agents that do not have support in the initial equilibrium profile 

has a positive deviation benefit, implying that the profile remains an equilibrium in the full 

game containing all eleven of these agents. 

The results of this ranking provide further support for the hypothesis that agent per­

formance was significantly improved in 2006 over 2005. Previously, we provided results 

indicating that the 2005 equilibrium is not robust to the addition of any of the top 2006 

agents; all are beneficial deviations. The 2006 equilibrium is robust to the addition of any 

of the 2005 agents, as any of these deviations typically incurs a large loss. Mertacor-05 

(Kontogounis et al., 2006) is an exception, with a loss less than two of the 2006 agents 

10This is the only symmetric equilibrium we have found after extensive search with several methods, but we 
cannot guarantee that it is unique. 
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(including Deep Maize-06 F which placed third overall). In the more detailed study of 

2005 agents, Mertacor-05 demonstrated exceptionally strong performance in the game-

theoretic context—significantly better than we would have predicted based on its tournament 

performance. This agent appears to have good performance in self-play, relative to the other 

agents in our pool. Overall, the rank ordering given by this method generally corresponds 

to the tournament rankings, where they are available. An exception to this is TacTex-05, 

which ranks lower than one might expect based on tournament performance. 

2.3.3 Discussion 

This case study illustrates many of the challenges of analyzing complex multi-agent systems. 

Exhaustive evaluation of TAC SCM strategies is infeasible due to the massive strategy 

space and high cost of computing the payoff table. Nevertheless, we are able to gather 

useful information about pertinent strategic question in this domain by combining empirical 

methods with game-theoretic analysis. The results presented in this chapter are a sample of 

the results we have gathered in this domain, which include: 

• Evidence of a congestion effect for playing identical strategies in the TAC SCM 
game—a potentially interesting aspect of agent performance that is not evaluated by 
tournament play (Jordan et al., 2007). 

• Empirical support for the claim that the strongest tournament agents improved between 
the 2005 and 2006 tournaments (Jordan et al., 2007). 

• Additional insight into the performance of several agents, including Mertacor-05 and 
PhantAgent-05, both of which demonstrated stronger performance in our analysis 
than anticipated by the tournament results (Jordan et al., 2007). 

• Verification of a rational basis for extreme early procurement behaviors observed in 
the first TAC SCM competition, and analysis of a preemptive strategy that improved 
profits across all manufacturers by preventing this behavior (Wellman et al., 2005a). 

• Evidence that no (reasonable) setting of a storage cost parameter introduced in 2004 to 
reduce early procurement incentives would have been likely to achieve the desired ef­
fect of substantially reducing the level of early procurement in the game (Vorobeychik 
et al., 2006). 

Taken together, these results comprise part of a growing body of evidence for the utility 

of empirical game-theoretic analysis in analyzing very complex games. Useful results have 
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also been achieved in several other domains using similar methods; a review of these studies 

is presented in related work. With feasibility established, the next set of questions concern 

the best methods for conducting this analysis. To date, there has been relatively little work 

directly evaluating different approaches for building and analyzing empirical game models, 

though some studies are beginning to emerge (Walsh et al., 2003; Wellman et al., 2005b; 

Jordan et al., 2008; Vorobeychik and Wellman, 2008). In the following chapters, I will 

present results that further the agenda of developing and evaluating methods for empirical 

game-theoretic analysis. 

2.4 Related Work 

The TAC SCM game has inspired an extensive literature that includes descriptions of individ­

ual agents (many of which are referenced above), analysis of components of agent strategies, 

and broader analysis of the tournament and comparisons among agents. Arunachalam and 

Sadeh (2005) and Eriksson et al. (2006) provide broad overviews of the scenario along with 

descriptions of early tournaments. Kiekintveld et al. (2006c) provides more detailed analysis 

of the 2004 tournament, including a description of important strategic developments during 

that year, and Ulrich (2006) analyzes the 2005 tournament finals. There are several instances 

of new analysis techniques developed for this domain, including methods for variance 

reduction (Sodomka et al., 2007), measures of the bullwhip effect (Jordan et al., 2006), 

and a tool for evaluating strategies by simulating qualitatively different market conditions 

(Borghetti et al., 2006). Researchers have also used game theory to model specific aspects 

of supply chain decision making (Cachon and Netessine, 2004). Zhang et al. (2004) apply 

this approach to TAC SCM, creating stylized models of parts of the game. There is also a 

body of work that applied machine learning methods to learn market prices in the TAC SCM 

game (Pardoe and Stone, 2007; Ketter, 2007; Kiekintveld et al., 2008). While not explicitly 

game-theoretic, there is a sensitivity to strategic interactions in this work, as the prices (and 

34 



www.manaraa.com

thus, correct predictions) will generally depend on the opposing agents. The strategic nature 

of the domain is accounted for in different ways, including online adaptation within game 

instances and specialized training procedures that select data based on the opponents. 

The general methodology of empirical game-theoretic analysis is a synthesis of a grow­

ing body of work that applies empirical methods to study a variety of complex strategic 

interactions. There is a common structure to these analyses, though they employ diverse 

techniques for specific stages in the analysis. One of the earliest examples of using sim­

ulation to generate an empirical estimate of a payoff matrix is found in work by Walsh 

et al. (2002), who studied strategies for both continuous double auctions and an automated 

dynamic pricing game. The methodology described here is based largely on the version de­

veloped by MacKie-Mason, Osepayshvili, Reeves, and Wellman in their papers on empirical 

game-theoretic analysis of a market-based scheduling domain (MacKie-Mason et al., 2004; 

Osepayshvili et al., 2005). Reeves (2005) further develops the methodology, and presents 

additional applications to first-price sealed bid auctions and the TAC travel shopping game. 

Wellman et al. (2007) present further empirical game-theoretic analysis in the TAC travel 

domain, with the explicit goal of selecting a version of their agent to play in the tournament. 

A similar empirical methodology is used by Phelps et al. (2005, 2006) to search for new 

strategies in a continuous double auction domain. One of the unique aspects of the approach 

pursued by Phelps et al. is the use of evolutionary methods to search the strategy space 

and motivate solution methods. In one of the few examples of empirical game theory in a 

non-auction domain, I applied the methodology to study a 4-player variant of chess called 

chaturanga (Kiekintveld et al., 2006b). 

There are also several examples of empirical methods applied to mechanism design prob­

lems. One of the first examples comes from Cliff (2003), who used evolutionary methods to 

search spaces of continuous auction mechanisms. Vorobeychik et al. (2006) introduced an 

approach using game-theoretic solution criteria, and applied this to study the relationship 

between settings of a storage cost parameter in the TAC SCM game and agent behavior. 
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Vorobeychik et al. (2007a) significantly refined this approach, and applied it to mechanism 

design problems for both Myerson auctions and vicious auctions. This approach has also 

been applied to study dynamic strategies for sponsored search auctions (Vorobeychik and 

Reeves, 2008). Roth (2002) advocates a combination of theory and experimentation for 

mechanism design, and presents several case studies of this approach applied to the design 

of real market mechanisms. 

Most of the word referenced above use empirical evidence to directly estimate payoffs, 

and uses these estimates to derive a game model for analysis. There is also a line of work 

that uses econometric methods to build empirical models of games from observations of 

actions (Bresnahan and Reiss, 1991; Lise, 2001; Bajari et al., 2007; Slade, 1995). The goal 

of this work is typically to infer the payoff structure of the game based on observations of 

actions taken by a set of players, based on the assumption that the observed play represents 

an equilibrium, providing a justification for the observed behavior. 

There are also many examples in the literature where experimental evidence is used to 

analyze multi-agent systems, but without applying game-theoretic solution criteria in the 

evaluation stage. One of the most common methods of evaluating strategies in domains 

where exhaustive analysis is infeasible is to use tournaments to identify the best strategies, 

or to rank strategies based on paired comparisons. Tournaments and rankings are ubiquitous 

in competitive athletics (Stefani, 1997; Park and Newman, 2005), as well as more cerebral 

pursuits including chess (Glickman, 1995). Within the game theory community, a famous 

example of using a tournament to evaluate strategies was the prisoner's dilemma tournament 

organized and analyzed by Axelrod (1984). The TAC competitions are a prominent example 

of this approach within the multi-agent systems community (Wellman et al., 2003). 
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Chapter 3 

Strategy Selection for Empirical Games: 
The Meta-Game Model 

The integration of empirical methods and game-theoretic analysis has yielded new ap­

proaches for analyzing complex multi-agent systems. I described one application of this 

approach in Chapter 2, and there are several additional examples in related literature that 

share a similar methodology. However, little is known about how best to implement the 

specific stages of the analysis. Different methods have been proposed for guiding explo­

ration of the strategy space, building game models from empirical data, and analyzing the 

resulting model. The question of which methods are most effective has received little direct 

attention in the literature, but is key to further development of the methodology. It seems 

unlikely that there will be a single best method for empirical game-theoretic analysis. Rather, 

different approaches may be desirable depending on various factors, such as characteristics 

of the game (e.g., structural properties), the amount of computational power available for 

analyzing the game, and the forms of information available. In this chapter I develop a 

framework for evaluating methods of empirical game-theoretic analysis across ranges of 

conditions, varying these and other factors. This framework may also be used to test general 

relationships between characteristics of the model and characteristics of the best solution 

methods. 

One of the most obvious reasons to analyze a game is to participate in the game and 

choose a good strategy. I establish an evaluation framework based on this objective. Specifi-
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cally, I consider the strategy selection task: for a given player in a game, select a strategy 

to play that will result in a high payoff. There are other analysis tasks that appear in the 

literature, often closely related to strategy selection. One common task is to identify one 

or more Nash equilibria of the game. This is related to selecting a good strategy, since 

an equilibrium specifies that all players play a best-response, given the strategies of the 

other players. However, identifying an equilibrium does not necessarily solve the strategy 

selection task. One problem is that there may be multiple equilibria, leading to a selection 

problem. I discuss some further difficulties that arise when players are uncertain about the 

game later in the chapter. 

In this work my interest is in procedures for selecting good strategies using empirical 

game models. These models represent estimates of the game, based on limited evidence 

about payoffs derived from simulations or other sources. The implication of this is that 

players must deal with uncertainty about the game when choosing a strategy. There are at 

least two general sources of uncertainty: (1) payoffs may be estimated based on a noisy 

sampling process, and (2) resource limitations may prevent players from gathering any direct 

evidence at all about the payoffs for some strategy profiles. Both of these were factors in the 

analysis of the supply-chain game presented in Chapter 2. The problem of uncertainty is 

not limited to models derived from simulation data. Weibull (2004) argues that even in very 

idealized laboratory settings, human subjects may have legitimate uncertainty about the true 

nature of the game they are playing. While I focus here on the implications of uncertainty 

for empirical game modeling, the results are relevant to some degree to additional settings 

where uncertainty is present. 

I begin by presenting a model in which strategy selection algorithms are applied to 

empirical game models. The important insight is that these algorithms can be modeled as 

strategies in a larger "meta-game" that endogenizes the observation process. This model 

motivates a framework and performance criteria for evaluating these algorithms using game-

theoretic solution concepts. I conclude the chapter by discussing a simple experiment which 
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both exemplifies the evaluation framework and demonstrates that the uncertainty captured 

by the model has a powerful effect on strategy selection. 

3.1 The Meta-Game Model 

I propose a model for empirical game-theoretic analysis applied to the strategy selection task. 

The premise of the model is that each player makes a strategy choice based on a separate 

noisy observation of an underlying game. The full game that incorporates this observation 

process is the meta-game. The sense in which this is a meta-game is that it is a more abstract 

game that describes the process of reasoning about another game—there is a game within a 

game. 

This model relates to the situation agent developers face in the Trading Agent Competi­

tion. Teams often run private experiments to test potential variations of their agent before 

the tournament.1 It is not possible to explore the full space of strategies in this way, and it is 

unlikely that teams will focus on exactly the same regions of the strategy space. Each team 

has their own set of data about the game, which can be an important source of evidence 

for deciding on a final agent strategy. The key question is how best to interpret the limited 

evidence available. 

3.1.1 Formal Specification 

The essence of the meta-game model is a standard normal-form game embedded in an 

empirical observation process, as depicted in Figure 3.1. I distinguish three notions of a 

game in the model: 

• The base game (g) represents the true underlying game. 
• The empirical games (Cfy) represent each player's imperfect observation of the base 

game. 

'in TAC tournaments there are also some shared observations, since early rounds are used for testing and 
evaluation purposes. Many teams do engage in significant private testing and intentionally hide key strategies 
until the final rounds (Kiekintveld et al., 2006c). 
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Meta-Game 

Empirical 
Game 

Noisy 
Observation / 

A 

B 

4,4 

1,7 

5,2 

6,6 

Strategy 
Selection 

(B) 

Player 1 

Possible 
Base Games 

,7(| 3,9 D 

^ 1 1 J 

Empirical 
Game 

Noisy 
i Observation 

A 

B 
Strategy 
Selection 

6,5 

2,5 

3,1 

7,8 

Player 2 

Figure 3.1 A depiction of a meta-game showing selection of the base game, generation of empirical 
games, and strategy selections based on the empirical games. Here, player 1 chooses strategy B and 
receives payoff 3, while player 2 chooses strategy D and receives payoff 9. 

• The meta-game (T) encompasses the full interaction between players, including 
observation of the base game and strategy selection. 

Formally, I define a meta-game by the tuple (I,S, G,f, {Q}, {©}). The base game and 

empirical games are both standard normal-form games, with identical sets of players, /, 

and strategies S. There is a set of possible base game payoff functions, G, representing a 

class of games the players may be playing. The instances of this class, g eG, correspond to 

the payoff functions U in a normal-form game. An instance g is drawn randomly from the 

class of possible games according to the density / , but is not revealed directly to the players. 

Instead, players receive private observations from the set of possible empirical game payoff 

functions, (Ot G €Lu The empirical games selected for the players are related to the base 

game by the conditional probability function @, = Pr(c$|g). In practice, I will often define 
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the observation model ({£2} and {©}) implicitly by describing a procedure used to generate 

empirical games from base games. One natural example is adding Gaussian noise to the 

payoffs of a base game to generate empirical observations. 

Players select mixed strategies <7j for the base game depending on their observations. 

The expected payoffs they receive are determined by the profile of strategies selected, a, 

and the base-game payoffs, g. The entire scenario is played once, so players cannot carry 

over knowledge of the game or specific opponents for future decisions.2 It may be useful to 

think of a meta-game as proceeding in phases: 

1. Game Selection: Nature draws the base game payoffs g G G according to / . 
2. Observation: Nature generates the empirical games a% € H„ conditioning on g 

according to ®,-. 
3. Strategy Selection: Players select mixed strategies Gu conditioned on co,. 
4. Payoff Allocation: Players receive expected payoffs depending on o~ and the payoffs 

for g. 

Strategies for playing the meta-game are called meta-strategies, and are essentially strate­

gies for selecting base-game strategies (hence the term "meta"). Specifically, a meta-strategy 

y/i € *P;, maps any empirical game observation into a base game strategy, M/,-: Q —>• £;. 

An important insight of the meta-game model is the intuition that solution algorithms for 

the strategy selection task can be modeled as meta-strategies. Any algorithm that takes as 

input an empirical game description and returns a strategy is a valid meta-strategy. For 

example, an algorithm that finds a Nash equilibrium and plays according to this strategy is a 

meta-strategy.' Another valid meta-strategy selects the uniform mixed strategy regardless of 

the observation. Of course, these two meta-strategies may have very different performance 

characteristics. 

I denote the payoffs for meta-strategy yj- in the profile y/ using the function II,-(y). The 

notation y//(o%) refers to the strategy chosen by the meta-strategy for the given observa-

2I use a one-shot setting in part to make a clean distinction between observing the game parameters 
and observing a specific opponent's strategy. In a repeated setting it may be possible to learn about both 
simultaneously, raising many additional issues beyond the scope of this work. 

3In the case where there are multiple equilibria, a selection method is necessary to distinguish among them. 
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tion. The function \jf is defined by the expected payoffs for the strategies chosen by the 

meta-strategies, where the expectation is taken over the distribution of base games and 

observations: 

n ' 0 " ) = E E Pr(g)-Pr(0)|g).Mf(vAi(0)i),...,^(^)). (3.1) 

Here, uf is the payoff function for player i in game g. Using this definition of meta-

strategy payoffs, I define meta-strategy equilibrium analogous to Nash equilibrium: 

Definition 7 A meta-strategy equilibrium is a meta-strategy profile \j/ in which no player 

has an incentive to deviate to a different meta-strategy. That is, 11,-(v ,̂ y_,-) > II,(i^,!//_,) 

for all players i and all meta-strategies Xjfj G ^ j . 

The essence of this definition is a Nash equilibrium of a normal-form representation 

of the meta-game. A meta-strategy equilibrium is stable in the same sense that a Nash 

equilibrium is; given the meta-strategies used by the other players, no player would wish 

to change to a different meta-strategy. For this property to hold globally, it must hold 

for each individual observation. That is, for every possible observation, the equilibrium 

meta-strategies must select a best-response strategy in expectation, given the distributions of 

games, opponent observations, and opponent choices for each observation. If there were a 

better response to an observation, then the meta-strategy that modifies only the response to 

this observation but holds the rest of the choices fixed has a higher expected payoff, violating 

the equilibrium assumption. 

The definition of the meta-game model presented thus far abstracts out common ele­

ments of empirical game-theoretic analysis, and makes clear the mapping between strategy 

selection algorithms and meta-strategies. In the sequel, I explore various instantiations 

of this model, defining particular classes of games and observation models. All of these 

variants share the high-level context of empirical observation described in this section. One 

further item which I have not addressed in the model is what information players have about 
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the underlying game and observation models (e.g., whether they have common knowledge 

of the class of games or the way empirical games are generated). This issue bears further 

discussion, which I defer to Chapter 4. In principle, players may have beliefs about the 

underlying model. However, it is often of interest to consider restricted meta-strategies that 

do not make use of these beliefs. 

3.1.2 Discussion 

Meta-games model situations in which players do not have common knowledge of the 

payoffs in the game. They can be viewed as a form of Bayesian game in which the types are 

denned by the possible empirical game observations. Under this interpretation, meta-strategy 

equilibria are a form of Bayes-Nash equilibria. The type space of a meta-game is very 

complex, relative to most Bayesian game models found in the literature. The empirical 

games are multi-dimensional, and the sheer number of potential observations in realistic 

settings is immense. Empirical games also have a mutual dependence on the base game, so 

the observations are not independent. That is, each player's type reveals information about 

the realization of the other players' types. This must be accounted for in belief updates, 

making these updates considerably more difficult. In the literature, games modeled using 

the Bayesian framework typically have independent type distributions, though a notable 

exception is common value auctions (Milgrom and Weber, 1982; Chatterjee and Harrison, 

1988). 

One interesting limiting case of the meta-game model occurs when players directly 

observe the base game with no uncertainty. In this case, we might expect meta-strategies that 

play according to Nash equilibria to form equilibria of the meta-game. This is true only if the 

meta-strategies always coordinate on the same Nash equilibria of the base game. Consider 

a meta-strategy that finds all pure-strategy equilibria of the empirical game and selects a 

random equilibrium to play. In the game shown in Table 3.1, this meta-strategy would 

receive a very low payoff playing against itself. There are two pure-strategy equilibria of the 
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u 
D 

L 
-M.-M 

1,1 

R 
22 

-M,-M 

Table 3.1 An example game in the normal form, where M represents a large number. 

game, [U,R] and [D,L]. Randomly selecting between these induces a mixed strategy. If both 

players use this mixed strategy, they receive arbitrarily low expected payoffs (depending 

on the value of M) because the mixtures place positive probability on the profiles [D,R] 

and [U,L]. Moreover, the profile where all players use this meta-strategy is clearly not an 

equilibrium of the meta-game. Always playing either U or R gives a higher payoff than 

a random mixed strategy when the other player is playing a random mixture, so this is a 

beneficial deviation. 

This example illustrates why simply playing according to some equilibrium is not suf­

ficient to generate equilibrium meta-strategies. Meta-strategies must also coordinate on 

a particular equilibrium. For instance, a meta-strategy that always selects and plays the 

[U,R] equilibrium does form an equilibrium of the meta-game when all players use it. There 

are many possible coordination mechanisms that would suffice for this purpose, such as 

selecting the equilibrium with the highest aggregate payoff. 

Observation noise makes it more difficult for meta-strategies to coordinate on equilibria 

of the base game for two reasons. First, noise affects the perceived benefit for each of the 

possible deviations in the game. Profiles that are not equilibria of the base game may appear 

to be equilibria in the empirical games, and vice versa. This effect can be bounded if the 

noise is bounded by a small constant c, such that the payoffs observed in the empirical game 

differ from the base game payoffs by no more than c. Consider a pure profile in an empirical 

game with regret £. This profile's regret is at most e + 2c in the base game, since there are 

two payoffs that define the maximal benefit to deviating. If e < —2c, the profile must be a 

Nash equilibrium of the base game. Furthermore, the other players' observed regret for this 

profile must lie in the range [e — 4c, e + 4c]. 
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A more subtle effect is that noise can break coordination mechanisms that are based 

on payoffs. Looking again at the game in Table 3.1, suppose that empirical games are 

generated by adding noise U[-5,5] to each payoff, and that M > 5. Both [L,D] and [U,R] 

are equilibria in any empirical games generated using this observation model. However, 

the coordination mechanism of selecting the equilibrium with the greatest aggregate payoff 

would fail here, since either profile could have the highest observed aggregate payoff. When 

the meta-strategies fail to coordinate on an equilibrium, the outcome can be arbitrarily bad. 

By breaking coordination, even small amounts of observation noise can have a very large 

impact on the payoffs achieved by a meta-strategy. 

3.1.3 Meta-Games with Directed Observations 

So far, I have assumed that players receive game observations in the form of estimated 

payoff matrices. This clearly abstracts away from many of the details of gathering evidence 

and estimating payoffs from more primitive data. Players may have some degree of control 

over the payoff information they observe, enabling them to use directed exploration meth­

ods. It may also be possible to make better payoff estimates by processing the raw data, 

for instance, by applying variance reduction methods (Wellman et al., 2005a) or machine 

learning (Vorobeychik et al., 2007b). Capturing these details requires a richer observation 

model than presented above. I describe (informally) an alternative model that allows players 

to direct the simulation process for estimating the game. More detailed treatments of simi­

lar simulation-based models are given by Vorobeychik et al. (2006) and Vorobeychik and 

Wellman (2008). 

Suppose that instead of observing an estimated payoff matrix, players have access to a 

black-box simulator. This simulator has the capability to return a sample of the payoffs for 

any strategy profile in response to a query. The payoff samples may be either deterministic 

or stochastic, depending on the application. Players are allowed to execute only a limited 
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number of queries before making their final strategy choice.4 These are the same basic 

capabilities provided by the TAC SCM simulator used to generate game data in Chapter 2. 

Players can build estimated payoff matrices using this simulation model. The key differ­

ence is that they can choose which profiles to sample, and may be able select profiles that 

are more likely to factor into the final decision. Each player faces a sequence of choices, 

each specifying a profile to sample. At each iteration, the choice may depend on the history 

of observations, so the number of possible ways to choose samples grows exponentially in 

the length of the sequence (i.e., the number of samples allowed). These choices are also 

(in principle) strategic, in that they may depend on beliefs about the other players—beliefs 

which must be updated after each sample to reflect the new information. Conceptually, the 

meta-game model could be extended to include this sampling process.3 I do not present a 

formal extension here as it would add little to the discussion by itself. 

Identifying an optimal policy for making these sampling choices is quite daunting, 

given the complications described above. However, it may be possible to identify heuristic 

approaches or approximations which perform well in practice. I take this approach in 

Chapter 5, studying heuristic policies for choosing which profiles to sample next, given 

access to a game simulator. 

3.2 Empirical Evaluation of Meta-Strategies 

My primary interest in this work is to develop practical methods that advance the state 

of the art for empirical game-theoretic analysis. The usefulness of any particular method 

depends in part on how well the method generalizes to different applications. In terms of 

the meta-game model, characteristics of the game class and observation model are likely to 

vary depending on the application. For instance, in some cases the game class may have 
4 An alternative approach to a fixed bound is to model the cost of each sample explicitly. 
5A common way to model sequential choices in games is the extensive form (Fudenberg and Tirole, 1991); 

a formal extension of meta-games to include the sampling choices could be based on this formalism. 
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structural properties that can be exploited in the analysis. Another important variable is the 

amount information available about the game, which may depend on the degree of sampling 

noise, the cost of running simulations, or other factors. There is not a single meta-game 

that is a good model for all applications of empirical game-theoretic analysis—the details 

depend on the domain in question. Solving any specific meta-game is of limited value 

unless the solution generalizes in some way. The focus of my evaluation methods is to 

identify solutions that perform well across a range of conditions, even if they are not optimal 

solutions to any specific case. 

Broadly speaking, there are two approaches for analyzing meta-games. The first is to 

find exact solutions to models that are amenable to mathematical analysis. This approach 

potentially offers the sharpest and most satisfying results. However, the models which can 

be solved may be limited in scope. Meta-games present significant challenges for exact 

analysis, a point I discuss further below. The general question raised by solving restricted 

cases is whether the results will generalize to more realistic conditions. In other words, do 

the solutions perform well in practice, and which are best under different circumstances? 

The other high-level approach is to exploit computational tools to study more ambitious 

models empirically. While there are limits to the claims that can be made using this type 

of evidence, this approach offers a way to address questions that are not easily amenable 

to mathematical approaches. One use of empirical evidence is to identify the best known 

meta-strategies for specific meta-games of interest where exact solutions are not known. 

Empirical methods are also well-suited to studying variations of the meta-game model, 

which is useful for studying the kind of generalization described above. By comparing 

candidate methods across different conditions, it is possible to assess their relative strengths 

and weaknesses. I provide a concrete experiment demonstrating this form of evaluation 

in Section 3.3, showing how the performance of a naive equilibrium prediction method is 

affected by varying levels of observation noise. 

These broad approaches are complementary, and yield different sorts of insights. One 
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way that they can be used in conjunction is to develop candidate meta-strategies using 

exact analysis of simplified models, and to evaluate these candidates over a broader range 

of conditions using empirical methods. There already exist a number of methods in the 

literature which can be adapted into candidate meta-strategies, some which have already 

been applied to analyze empirical game models. What is lacking is a common framework 

for comparing these methods. I develop an empirical framework for evaluating candidate 

meta-strategies in Section 3.2.2, after some additional discussion of the difficulties of solving 

meta-games exactly. 

3.2.1 Challenges for Finding Exact Solutions to Meta-Games 

A natural goal is to identify exact equilibrium solutions for specific meta-games. As de­

scribed above, meta-games are games of incomplete information, and they are particularly 

challenging instances in several respects. The most problematic is that players receive very 

complex information in the form of empirical game estimates. Solving incomplete informa­

tion games is very hard in general. Computational complexity results offer one indication 

of this. Constructing an equilibrium for complete information games is PPAD-complete 

(Daskalakis et al., 2006). Incomplete information games contain complete information 

games as a special case,6 so constructing an equilibrium is PPAD-hard. Determining 

whether a pure-strategy Bayes-Nash equilibrium exists is NP-complete, even for 2-player, 

symmetric incomplete information games (Conitzer and Sandholm, 2003). For arbitrary 

incomplete information games with infinite type spaces, closed-form solutions may not 

exist. There are no general-purpose algorithms available for computing exact Bayes-Nash 

equilibria in this case, though methods of approximating equilibria have recently been 

developed for some classes of games (Armantier et al., 2007; Reeves and Wellman, 2004). 

Another point of reference is the literature on global games (Carlsson and van Damme, 

6A complete information game corresponds to an incomplete information game with a single type for each 
player. 
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1993), which are closely related to meta-games. Global games are also games of incomplete 

information, and embed an underlying game within a noisy observation process. Players 

receive observations that are determined by adding random noise terms to each payoff, 

and do not have common knowledge of the payoffs. The key theoretical results show that 

there is a unique equilibrium of the global game as the noise terms vanish in the limit, 

effectively selecting one of the equilibria of the complete information game (Carlsson and 

van Damme, 1993; Frankel et al, 2003). There are applications of this model to bank runs, 

debt pricing, and similar scenarios (Morris and Shin, 2003). However, there are no general 

theoretical result characterizing the equilibria of global games away from the limit. Carlsson 

and van Damme (1993) note in their own discussion of the model that it is mathematically 

challenging beyond the class of 2-player, 2-aetion games. 

3.2.2 Experimental Framework 

Experimental analysis offers a way to supplement theoretical analysis of meta-games, the 

scope of which is limited by the complexities of the model. I propose a framework for bench­

marking candidate meta-strategies that adapts many aspects of empirical game-theoretic 

analysis, as outlined in Section 1.3. To apply the framework, the meta-game model must 

first be instantiated by specifying the following: 

• The class of possible base games 
• The distribution from which base games are drawn 

• The method used to generate observations for players 

In addition, I specify a restricted set of candidate meta-strategies for analysis. These 

candidates may be algorithms drawn from the literature, solutions of simplified models, or 

heuristics. Given a set of candidate strategies, I use Monte Carlo simulation to estimate the 

payoffs of the constrained meta-game. To do so, all of the components must be implemented 

in computer code; this requires that the game class and observation model are generative. 

Meta-strategies must be valid (return a strategy) for all possible observations. Simulation 
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to estimate payoffs follows the stages outlined in Section 3.1.1. These stages are repeated 

for all possible combinations of meta-strategies to estimate the full payoff matrix for the 

constrained meta-game, sampling many times for each strategy profile. 

This payoff matrix must be symmetric if players cannot condition their choice of meta-

strategy on any private information. In the meta-game, I assume that all payoff information 

is revealed through the observation process, so players have the same information before 

the observations are revealed. I use this to reduce variance in the estimated meta-game 

by averaging all payoffs that must be equivalent due to symmetry. The estimated payoff 

matrix for the meta-game is the basis for evaluating the strategy choices made by the 

meta-strategies. Standard game-theoretic solution concepts can be used to analyze these 

meta-games, including dominance, regret, and equilibrium. I introduce and motivate specific 

performance measures as necessary. 

What types of questions is this experimental framework suited to answering? One possi­

ble use is to select the best meta-strategy from a set of candidates for a specific meta-game. 

Finding a solution to a constrained meta-game does not offer any guarantees on solution 

quality. However, as argued in Section 2.2 1, the solution is more likely to be a global 

solution than an arbitrary profile, even given conservative assumptions about the quality of 

meta-strategies that are not includes in the set of candidates. A more interesting use of the 

model is to explore relationships between meta-strategy performance and characteristics 

of the meta-game. This has the potential to offer more general insights into how to design 

meta-strategies, and to identify strengths and weakness of different techniques. To facilitate 

this type of analysis, is it often useful to define parameters that vary gross characteristics of 

the meta-game or meta-strategies. For example, I later define parameters of the observation 

model that vary the amount of information contained in each players' observation of the 

game. By simulating meta-games with different settings of these parameters, it is possible 

to observe how the performance of meta-strategies changes in response to the amount of 

information available. Another example of a similar experiment is to test whether some 
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meta-strategies are able to exploit specific structural properties of the underlying game. 

There are some limitations of the empirical approach that deserve mention. First, the 

simulated meta-games are estimates of the payoff matrix, and may contain sampling noise. 

In my experiments, I mitigate this by taking very large numbers of samples, but it cannot 

be avoided entirely. There may also be a significant computational cost to estimating the 

meta-game, especially if base games are large and the meta-strategies are computationally in­

tensive. In practice, this may limit the analysis to modest sets of candidate meta-strategies.7 

The restriction on the space of meta-strategies considered is perhaps the most severe lim­

itation. Given this restriction, it is generally not possible to make positive global claims 

about the properties of the meta-strategies in the full meta-game (e.g., whether they form 

an equilibrium of the meta-game), though it is possible to show definitive negative results 

(e.g., that a profile cannot be an equilibrium). The usefulness of the analysis depends in 

part on careful selection of promising candidates, and an iterative process of improving the 

best known solution. To the extent that a candidate solution has survived many challenges, 

there is a stronger claim that it is likely to represent a global solution, or at least a close 

approximation. 

3.3 Naive Equilibrium Analysis 

I begin with an experiment designed to demonstrate the effects of observation noise on naive 

equilibrium analysis in a general setting. Section 3.1.2 gave a motivating example showing 

that noise can break the coordination necessary for equilibrium behavior, potentially leading 

to poor payoffs. Here I show that the effect is not limited to isolated cases, but is a pervasive 

problem that leads to poor performance for naive equilibrium methods on average. The 

more general point is that payoff uncertainty has a dramatic effect on strategic analysis—an 

effect captured by the meta-game model This experiment also serves as a relatively simple 
7I have experimented with up to 20 meta-strategies; at this point, computational costs become burdensome 

using the present implementation. 
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example of the general experimental framework described previously, and shows the sorts 

of insights that can be achieved using this paradigm. 

I set up the experiment using two candidate meta-strategies. The first represents a naive 

equilibrium analysis that ignores uncertainty and applies the standard perfect-information 

solution concept of Nash equilibrium to the empirical game. Naive Pure Strategy Nash 

Equilibrium (NPSNE) finds the pure-strategy profile of the empirical game with minimum 

regret £, and plays according to this profile. The criterion of selecting the profile with mini­

mum regret serves as a coordination mechanism, since it will identify a unique pure-strategy 

profile unless there are ties in the regret function.8 In an idealized setting where pure-strategy 

equilibria exist and there is no observation noise, the NPSNE meta-strategy will always 

coordinate on the same equilibrium of the base game. This implies that the profile where all 

players use this meta-strategy is an equilibrium of the meta-game in this case, since there 

is no possible best-response to the equilibrium strategies in the base game that could be 

selected by another meta-strategy. The second candidate meta-strategy, Best-Response to 

Uniform (BRU), does not attempt to make any use of information about the other players' 

payoffs to predict their behavior. It always predicts that opponents will play a uniform 

random mixture over their pure strategy choices, and plays a best-response to this random 

distribution of opponent play. 

The base games are drawn uniformly from a class of 2-player, 4-strategy games with 

random payoffs.9 Each payoff is drawn uniformly between 0 and 1. For the purposes of this 

experiment, I screen the games within this class so that all instance have pure-strategy Nash 

equilibria.10 I generated 2500 sample random games, of which 1888 have PSNE. The obser­

vation model used for this experiment generates empirical games by adding independent 

mean-zero Gaussian noise to each payoff in the base game. 
8This does not occur in the set of games tested. 
9These games are generated using the GAMUT tool, and are instances of the "Random Game" class 

(Nudelman et al., 2004). 
10This ensures that NPSNE will always find a true equilibrium. I observe the same qualitative result if 

games without PSNE are included in the experiment. 
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BRU 
NPSNE 

BRU 
0.66 

NPSNE 
0.67, 0.67 

0.76 

Table 3.2 Meta-game for NPSNE and BRU with noise standard deviation of 0.05. Only the distinct 
payoffs are shown in the matrix. 

I test a range of different noise levels, corresponding to Gaussian noise with different 

standard deviations. Each noise level is formally a separate meta-game with a different 

observation model. The meta-games for this setup can be represented as symmetric 2x2 

payoff matrices, with 4 distinct payoffs. An example meta-game payoff matrix is shown in 

Table 3.2. All of the payoffs in the meta-games are estimated by simulation, using 5 sample 

observations for each of the 1888 sample game instances. 

Figure 3.2 plots the payoffs for a set of meta-games with varying levels of observation 

noise. Each line corresponds to one of the four payoffs in the meta-game, defined by the 

four possible pairings of the two meta-strategies. As argued above, NPSNE must be an 

equilibrium of the meta-game in the limiting case where there is no noise (on the far left of 

the plot). Indeed, NPSNE achieves a very high payoff when both players use it in this case, 

though most of the benefit is lost if the other player chooses according to BRU. The equilib­

rium analysis remains beneficial as small amounts of observation noise are introduced, but 

the performance of NPSNE relative to BRU steadily decreases as the noise level increases. 

Beyond the noise level of roughly 0.2, BRU is a dominant meta-strategy; regardless of 

whether the opponent is using NPSNE or BRU, the player achieves a higher payoff using 

BRU. This is a rather striking result, and clearly shows that ignoring payoff uncertainty in 

equilibrium analysis can lead to poor strategy choices. When there is sufficient uncertainty, 

even the extreme method of predicting completely random opponent play results in better 

choices than making strategic predictions based on faulty assumptions. 

53 



www.manaraa.com

Uniform Random Games with PSNE 
>f

fs
 

P
ay

e 
te

g
y 

1 
i 
(0 
* 
S 

0.85 

0.8 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

BRU vs. BRU 

R 

BRUvs.NPSNE * 
NPSNE vs. BRU * 

NPSNE vs. NPSNE a-

NPSNE 
Domlnai 

0 0.1 0.2 0.3 0.4 0.5 
Observation Noise Standard Deviation 

Figure 3.2 Expected payoffs for NPSNE and BRU with varying noise levels, for games with 
uniform random payoffs and a Gaussian observation model. 

3.4 Related Work 

One feature of the meta-game model is that players could be playing any game from a class 

of games. Bednar and Page (2007) also study a model in which players play collections 

of game instances (called ensembles). They consider players that are bounded-rational, 

and only select from a limited set of strategies represented by finite automata. Given this 

restriction, they may not be able to play optimally in each individual game in the ensemble. 

The experimental results show that players often learn to play optimal strategies for the col­

lection of games as a whole when using evolutionary adaptation, even if they are suboptimal 

for particular games. 
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Another line of work that considers general algorithms for playing classes of games was 

initiated by Pell (1993). The idea is to develop algorithms which analyze a game description 

and generate a strategy based on the description. This is similar in spirit to my notion of 

a meta-strategy, and Pell actually uses the term meta-game to describe his approach. The 

specific algorithms developed in this work operate on a class of games similar to chess, all 

described in a logical language. The evaluation of this algorithm takes place in a tournament 

setting. 

The General Game Playing competition (Genesereth et al., 2005) was inspired largely 

by this work, and has the goal of encouraging development of more general approaches 

to game analysis. The competition has been played annually since 2005. Entrants in the 

competition design algorithms that take input in the form of a game description given in a 

specified language. The games are typically variations of common board games, such as 

chess or othello. After some time to analyze the game description, the algorithms play the 

game in a tournament setting. Some examples of techniques that have been used in this 

competition include co-evolution of strategies (Reisinger et al., 2007), feature extraction 

(Kaiser, 2007), and transfer learning (Banerjee and Stone, 2007). 

One of the insights of the meta-game model is that the relevant notion of equilibrium 

when dealing with an estimated game is an equilibrium of the meta-game, rather than 

an equilibrium of the estimated game. This is similar in spirit to the idea of a learning 

equilibrium for repeated games (Brafman and Tennenholtz, 2004). The learning equilibrium 

is an equilibrium between learning algorithms in a repeated game context, rather than an 

equilibrium of the stage game. A similar point is argued by Shoham et al. (2007), who pro­

pose the notion of targeted optimality against specific classes of opponents as an alternative 

to convergence to equilibrium in the stage game as a goal for multi-agent learning. 

There are also many example in the literature on repeated games of using experimental 

evidence to evaluate potential strategies. One of the first examples is Axelrod's Prisoner's 

Dilemma tournament (Axelrod, 1984). Several other studies have compared the performance 
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of small sets of candidate multi-agent learning algorithms in repeated games (Nudelman 

et al., 2004; Lipson, 2005; Powers and Shoham, 2004). A final interesting example is the 

Turing tournament proposed by Arifovic et al. (2006), designed to test how well algorithms 

predict the play of humans. One set of algorithms is tasked with mimicking the play of 

humans, while another tries to distinguish the play of humans from the algorithms. All 

of these examples rely on empirical evidence to evaluate candidate learning algorithms, 

many using the framework of a tournament. Tournaments evaluate only a limited set of the 

possible combinations of strategies, while the game-theoretic analysis I employ is based on 

analysis of all strategy profiles for a set of candidates. 
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Chapter 4 

Selecting Strategies with Noisy Game 
Observations 

In complex multi-agent systems, uncertainty about the game model is often inevitable. Using 

simulation to build empirical game models is one way to apply game-theoretic tools to 

very complex domains with large strategy spaces. However, empirical data may provide 

only payoff estimates, and even these may be unavailable for some strategy profiles. The 

meta-game introduced in the previous chapter models scenarios in which players have 

limited information about the game they are playing. In this chapter I address the question 

of how players should use empirical game models to guide their strategy choices. I apply 

the meta-game framework to evaluate three parameterized families of meta-strategies. 

The meta-strategies I consider are generic in the sense that they select a strategy based 

on any complete estimate of a payoff matrix. All three families are motivated by equilibrium 

concepts for complete-information games, but generalize these concepts to approximate 

the effects of payoff uncertainty. Each family is defined by a single parameter that controls 

the amount of uncertainty expressed in predictions about how opponents will play. I show 

experimentally that there is a systematic relationship between observation noise and the 

best parameter settings. Further experiments compare the three families of meta-strategies, 

and identify the current champion for the strategy selection task under uncertainty. The 

champion is robust, in that meta-strategies from this family outperform the other families 

for a wide range of conditions. 
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4.1 Candidate Meta-Strategies 

I introduce three families of meta-strategies (i.e., algorithms that analyze empirical game 

matrices to select strategies). They share some high-level features. All three select a 

best-response strategy to a prediction of how the other players will play, expressed as a 

probability distribution over the pure-strategy profiles. The two meta-strategies introduced 

in Section 3.3 (NPSNE and BRU) both have this form, but base their predictions on very 

different assumptions. At one extreme, NPSNE uses idealized strategic reasoning to predict 

other players' strategies precisely, based on payoff information and rationality assumptions. 

At the other, BRU predicts random opponent play, disregarding information about the other 

players' payoffs entirely. The experimental results presented for these meta-strategies show 

that the relative quality of these predictions depends on the gross level of observation noise. 

For low noise conditions, NPSNE dominated BRU, and for high noise conditions, the 

situation is reversed. 

Between these extremes lies a spectrum of distributional predictions that factor noise 

into strategic reasoning in some intermediate way. The three meta-strategy families I intro­

duce all have a single parameter that interpolates predictions between these two extremes. 

At one end of the parameter space, the meta-strategy uses an uninformed prediction. For 

parameter settings at the opposite extreme, the meta-strategies make predictions based on an 

equilibrium concept that assumes complete information. This spectrum of predictions is 

similar in spirit to the levels of reasoning in the cognitive hierarchies model introduced by 

Camerer et al. (2004). In this model, level 0 players play according to a uniform random 

distribution. Players using higher levels of reasoning best respond to a distribution of 

opponent play that assumes all other players use lower levels of reasoning. For instance, a 

level 2 player assumes a mixture of level 0 and level 1 players.' As the number of reasoning 

levels increases to oo play may converge to a Nash equilibrium, but this is not necessarily 

the case (unlike the meta-strategies considered in this work). 

^ h e particular distribution is a parameter of the model. A Poisson distribution is typically used in practice. 
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The parameter spaces of these meta-strategies reflect an inherent tension in the prediction 

task. Making specific predictions (e.g., a point equilibrium) allows the player to select a best 

response targeted specifically to the opponents' strategies. The tradeoff is that inaccurate 

predictions may result in poor choices against the actual strategies chosen by the opponents. 

Noisy payoff observations increase the risk of inaccurate predictions, because players share 

less knowledge of the game. After introducing the meta-strategies, I explore this tradeoff 

experimentally, analyzing the relationship between observation noise and the most stable 

parameter settings within each family. The hypothesis is that increasing the observation 

noise will favor meta-strategies that predict broader distributions of play. Vorobeychik and 

Wellman (2006) advocated a similar idea of using distributional predictions in the context of 

mechanism design. 

Another important aspect of the meta-strategies I study is that they do not make use of 

explicit beliefs about meta-game they are playing, such as knowledge of the game class. In 

principle, if players have common knowledge of the full description of the meta-game, they 

could derive explicit Bayesian beliefs from their observations and use these to implement 

equilibrium meta-strategies. While I do not rule out the possibility of players having such 

knowledge, there are several reasons that I focus on meta-strategies that do not use these 

beliefs. The observation process in the meta-game is intended to model the information 

players have about the game, and how it is revealed. Using external beliefs to make choices 

violates this spirit to some extent. Moreover, in practice it seems quite difficult to derive 

accurate beliefs about the factors that define the meta-game. For example, reading the 

game specification for the TAC SCM game (Section 2.1) does not give much intuition 

about the distribution of payoffs in the game; it is far easier to derive such information 

from simulation data. There are also practical advantages to meta-strategies that do not 

use explicit beliefs about the meta-game. They are generic, in the sense that they are valid 

regardless of the specifics of the underlying model. This means that they can be executed 

without modification for different meta-games, though the quality of the strategy selections 
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depends on the underlying meta-game. 

4.1.1 Pure-Strategy Approximate Nash Equilibrium 

When players have only a noisy observation of the game, it is more difficult for them to 

coordinate on an equilibrium of the base game. Profiles that are equilibria of the empirical 

game may not be equilibria of the base game, and equilibria of the base game may not 

be equilibria of the empirical game. Neither an equilibrium of the base game nor of the 

empirical game necessarily correspond to equilibria of the meta-game. 

One possible way to account for this when analyzing an empirical game is to consider 

a broader set of approximate equilibria. In Section 1.2.2 I define an approximate Nash 

equilibrium based on the notion of regret. If no player can improve their payoff by more than 

e by deviating to another strategy from a profile <x, the profile has regret e and is an e-Nash 

approximate equilibrium. This approximation relaxes the requirement that all players choose 

an exact best response in a standard Nash equilibrium, and provides a measure of how close 

any given profile is to being a Nash equilibrium. 

A common prediction in the game theory literature is that Nash equilibrium profiles are 

more likely outcomes than profiles that are not equilibria, due to their stability properties. 

A natural extension of this prediction is that approximate equilibrium profiles with low 

regret are more likely outcomes than profiles with large regret measures. This is especially 

compelling in the context of noisy observations, where the observed regret for a profile 

may not be the true regret. Profiles that have lower regret are more likely to appear to be 

equilibria to both players, and are perhaps more likely to be played as a result. Based on this 

intuition, I define a family of meta-strategies that uses the e-Nash Solver (ENS) to predict 

an outcome distribution over the strategy profiles in a game. The algorithm places greater 

weight on approximate equilibrium profiles with low regret, explicitly including negative 

regret values. A Boltzmann distribution is used to construct a distribution from the regret 
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measures: 

There is one parameter of this distribution, T, commonly called the temperature parame­

ter. This parameter divides the e measure for each profile, either magnifying the differences 

(for small values less than 1) or reducing the differences (for large values). In one limiting 

case as x —• <*>, the probability distribution approaches the uniform distribution, ignoring 

differences in regret. At the other extreme as x —> 0, all of the weight in the probability dis­

tribution is placed on the profile with minimum regret. Intermediate values of x interpolate 

between these two extremes. The family of ENS meta-strategies is defined by the possible 

settings of this parameter. Strategy selections are made by computing a best response to 

the predicted distribution over strategy profiles. In the limiting case where x —> 0, the ENS 

meta-strategy is equivalent to the NPSNE meta-strategy from Section 3.3. 

I note one subtle reason why the predictions produced by this method may contain errors. 

Since the probabilities are determined based on properties of strategy profiles (i.e., regret), 

it is possible that the predicted distribution could not literally be observed for any mixed 

strategy profile a. Consider a distribution that predicts profile [1,1] will occur half of the 

time, and [2,2] the other half. For this prediction to be correct, players must select randomly 

between playing strategy 1 and playing strategy 2 using a common randomization device. 

Strategies that rely on common randomization are called correlated strategies (Aumann, 

1987). My model does not allow correlated strategies, so predictions that require random­

ization are clearly making prediction errors in these cases. However, the predictions and 

strategy selection are still well-defined, and may be reasonable approximations of the true 

distribution of play. 
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4.1.2 Mixed-Strategy Approximate Nash Equilibrium 

The previous method is based on a relaxation of the equilibrium model, but considers only 

pure-strategy profiles. I now define a family of meta-strategies that also finds approximate 

mixed-strategy Nash equilibria, using the Replicator Dynamics Solver (RDS). The algorithm 

first approximates mixed-strategy equilibria using an implementation of replicator dynamics 

(Taylor and Jonker, 1978) to search the space of mixed-strategy profiles. My implementation 

of replicator dynamics is based on the version described by Reeves (2005). While this search 

method is not guaranteed to find an equilibrium, in practice it almost always identifies a 

profile that is a close approximation to an equilibrium (i.e., has low e).2 The search process 

models an evolving population such that better strategies have greater representation in the 

subsequent population. Let pg(si) denote the fraction of the population for player i playing 

pure strategy ,sy in generation g, EP(si) denote the expected payoff to si in generation k, and 

W the lowest possible payoff.3 The population update rule for each generation is: 

pk(si) « pg^(8i) • (EP(Si) - W). (4.2) 

I use random restarts to prevent the search from becoming stuck in local optima. Both 

the maximum number of generations and how often the search restarts are parameters of the 

search. I fixed these for all experiments after preliminary exploration to determine settings 

that quickly found good equilibrium approximations.4 The profile identified during the 

search with the minimum regret is the equilibrium estimate. 

The ENS method uses the fact that we can quickly compute the regret for all pure-

strategy profiles to make predictions about the relative likelihood of these profiles. The RDS 

method of searching the mixed-strategy profile space is able to identify approximate equi-

2In my experiments, the regret for the best profile identified using this search averaged roughly 0.3% of the 
maximum payoff. 

3I do not assume symmetry in the game. 
4In all experiments, the search ran for 1000 iterations, with forced random restarts after every 100th 

iteration. In addition, after every 5 iterations the search was restarted if the current profile had a regret higher 
than 8% of the maximum payoff. 
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libria, but does not provide an analogous measure to compare the relative likelihood of all 

mixed-strategy profiles. However, it is still possible to interpolate between the approximate 

equilibrium prediction and the uninformed prediction using a generic parameterization. The 

algorithm forms a predicted distribution over pure-strategy profiles by taking a weighted 

combination of two distributions: the distribution induced by the predicted equilibrium, and 

the uniform distribution. A weight of 8 is placed on the uniform distribution, and 1 - 8 on 

the equilibrium distribution. As before, the final strategy selection is made by computing 

a best response to this prediction. The family of RDS meta-strategies is defined by the 

possible settings of the parameter 8. 

4.1.3 Logit Equilibrium 

The final family of meta-strategies is based on logit equilibrium, which is a specific form of 

the Quantal-Response Equilibrium (QRE) first introduced by McKelvey and Palfrey (1995). 

The key idea of this equilibrium model is to imagine that players make their choices using 

noisy best-response functions. To define a noisy best-response function for player i, first fix 

the strategies for all other players to 0"_,. The conditional strategy profile <x_j induces an 

expected payoff Wi(s,-, <r_,) for each of J'S pure strategies. A best-response function selects a 

strategy that maximizes this expected payoff. A noisy best-response function selects the 

strategy that maximizes Ui(sj,G-i) + Tfo, where r}s. is a noise term added to the expected 

payoff for strategy S{. The noise terms are drawn from some probability distribution, which 

in turn induces a probability distribution over pure strategies specifying how likely each 

is to be selected. Strategies that are better responses are selected more frequently, but no 

strategy is selected with certainty. Even a strategy with very low expected payoffs may still 

be chosen if the realization of the noise term for the strategy is high enough. 

A quantal-response equilibrium is a fixed point in the mapping of noisy best-response 

functions. In the equilibrium, all players correctly estimate the expected payoffs for each of 

their pure strategies, and play according to their noisy best-response function. The payoff 
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estimates reflect the actual mixed strategies played by opponents, including the effects of 

noise terms. The basic quantal-response model does not specify a particular distribution for 

the noise terms. The most common form in the literature is logit equilibrium, in which the 

noise terms r\Si are drawn independently from an extreme value distribution with cumulative 

distribution Fj (J\S.) = e~e "'. For this distribution of noise terms, the choice probabilities 

for players' strategies take the form of a logistic choice function: 

Prfo) = -—,—-. (4.3) 

The logit equilibrium was first studied by McKelvey and Palfrey (1995), and an im­

plementation of this model is available in the Gambit software package (Turocy, 2005; 

McKelvey et al., 2006). I use this implementation as the basis of the Logit Equilibrium 

Solver (LES), which solves for a logit equilibrium of the observed game and plays a best 

response to this equilibrium prediction. The parameter X of the logit model controls the 

magnitude of the noise terms in the best-response functions, and the corresponding dis­

tribution of choice probabilities. In the limit as X —*• 0, the noise terms become infinite 

and equilibrium play approaches the uniform random distribution over the pure-strategy 

outcomes. As X —»• °°, the noise terms approach zero and the logit equilibrium converges to a 

Nash equilibrium. The Gambit logit equilibrium solver uses a tracing procedure to compute 

equilibria for different settings of X. Essentially, the algorithm starts from the centroid 

and traces the solution correspondence for small changes of X. For very large values of A, 

the solution correspondence converges to a Nash equilibrium for (almost all) games.5 By 

solving for logit equilibrium with large values of A, this solver can also be used to closely 

approximate sample mixed-strategy Nash equilibria. Logit equilibrium is particularly inter­

esting as a meta-strategy for two reasons. It was originally developed as a model of human 

behavior in games, and has been used to explain various phenomena that have been observed 

5The equilibrium is a unique selection from the set of equilibria, because the algorithm converges to the 
same equilibrium if executed multiple times. 

64 



www.manaraa.com

in laboratory experiments. I return to this point following presentation of the results. Logit 

equilibrium is also an exact Bayes-Nash equilibrium of an incomplete-information game in 

which players have perturbed payoffs. In this game, players have a common observation of a 

base game, but privately observe a vector of payoffs for playing each of their pure strategies. 

Players act to maximize the combination of their payoff in the game and the payoff they 

receive for the pure strategy. Each player knows their own payoffs with certainty, but does 

not observe the perturbations for the other players' payoffs. A quantal-response equilibrium 

with the appropriate distribution of noise terms is a Bayes-Nash equilibrium of this game. 

This setup has many similarities to a meta-game, and could potentially be modeled as a 

meta-game with an appropriate observation model. However, it makes some simplifying 

assumptions that do not hold in the general meta-game model or my experimental setup. 

First, players know their own payoffs with certainty, and are only uncertain about others' 

payoffs. Second, the noise terms are associated with pure strategies, rather than strategy 

profiles. This assumes that the noise is independent of the other players' strategy choices, 

which does not hold for estimated game matrices. To estimate a game matrix, payoffs 

are usually sampled by running simulations for a particular profile of strategies. More 

simulations may be run for some profiles that others, so the amount of uncertainty for the 

payoffs associated with different strategy profiles may vary substantially. Finally, in the 

specific case of logit equilibrium (which the available solver implements), the distribution 

of noise is restricted to the extreme value distribution, which may not be a good model of 

the noise in an estimated payoff matrix. Nevertheless, it is quite conceivable that the coarser 

noise model of logit equilibria is a good approximation in many cases. 

4.2 Game Classes and Observation Models 

The experiments presented in this chapter explore three base game classes paired with two 

distinct modes of observation. While clearly not exhaustive, these variations represent a 
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diverse set of plausible conditions. All of the games are 2-player, 4-strategy non-symmetric 

games with payoff normalized to the range [0,1]. The three classes of games are uniform 

random, common interest, and constant sum. I generate instances from these classes us­

ing the GAMUT tool developed by Nudelman et al. (2004). Uniform random games are 

instances of the GAMUT random game class, while the common interest and constant 

sum game classes are both instances of covariance games, with covariance of 1 and - 1 , 

respectively. Covariance games are generated by drawing the payoffs for each outcome 

profile from a multivariate normal distribution, fixing the correlation between each pair of 

players' payoffs. I generated 10,000 sample instances of games from each of these three 

classes, and used the same instances for all experiments in this chapter. 

I consider two observation models: stochastic observation and incomplete observation. 

The stochastic observation model generates empirical games by adding independent mean-

zero Gaussian noise to each payoff in the base game. I vary the level of uncertainty in 

these observations by varying the standard deviation of the distribution. The incomplete 

observation model generates empirical games by revealing the exact payoffs for a random 

subset of the pure-strategy profiles. No additional information about the payoffs for the 

remaining profiles is revealed; only the mean payoff for the game class is available as an 

estimate.6 The level of uncertainty in these observations depends on the number of profiles 

for which payoffs are revealed. 

These two observation models correspond to different types of uncertainty common in 

empirical game-theoretic analysis. The stochastic observation model corresponds roughly to 

the presence of sampling noise due to stochastic elements in simulation data. In this model, 

players have the same amount of information about the payoffs for each strategy profile. 

The incomplete model corresponds to case where there is no direct information available 

about some strategy profiles. For example, the players may have a reliable source of payoff 

information, but only a limited search capability. In this model, the amount of information 

6The mean estimate is 0.5 for all classes defined here. 
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Name 
BRU 
ENS 

RDS 

LES 

Parameters 
None 

T 

8 

X 

Prediction Method 
Uniform random opponent play 
Form distribution over pure-strategy profiles, 
with lower-regret profiles more likely 
Approximate a sample mixed-strategy Nash equilibrium, 
weight equilibrium and uniform distributions according to 8 
Compute logit equilibrium for given X, 
assuming players use noisy best-response functions 

Table 4.1 Summary of meta-strategy families and their associated free parameters. 

players have about different parts of the profile space varies. Many real domains (such as 

the TAC SCM game in Chapter 2) contain both forms of uncertainty, but here I isolate the 

two cases for experimentation. 

4.3 Noisy Observation and Distributional Predictions 

The three families of meta-strategies defined in the previous section (ENS, RDS, and LES) 

are summarized in Table 4.1, along with the BRU meta-strategy defined in Section 3.3. 

All three families are based on the idea of generalizing equilibrium concepts for complete 

information games to make distributional predictions. These predictions are distributions 

over the pure-strategy profiles, and the meta-strategies select strategies by computing best-

responses to these distributions. Each has a single parameter that interpolates between a 

uniform random prediction and single equilibrium strategy profile, defined by the associated 

solution concept. The algorithms differ in which equilibrium concept is used and how 

the interpolation is performed. An example of how the prediction changes for different 

parameter setting is shown in Figure 4.1. The figure presents a visualization of how the 

predictions of the LES meta-strategy change for different settings of the parameter X (see 

Section 4.1.3). All predictions shown are for the same payoff matrix. At one end of the 

parameter space, the predictions are very flat, and all profiles are almost equally likely. At 

the other, the probability mass is concentrated on the profiles that are closest to equilibrium. 
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Figure 4.1 How changes in the parameter setting affect the LES predicted distribution over profiles. 
As the parameter X is decreased, the predicted outcome distributes weight more evenly across the 
pure-strategy profiles. Each curve represents a distribution. The profiles are sorted by probability, so 
the profile with the highest probability appears on the far left. 

The parameters of the other meta-strategies have qualitatively similar effects on predictions. 

Observation uncertainty makes it more difficult to predict what other players will do, 

and distributional predictions are a way to represent this uncertainty. When players have 

good information about the game, they may be able to make very specific predictions about 

what others will do and, in turn, select a response with a very high payoff in this specific 

context. However, selecting a best-response based on a specific prediction also carries a risk 

if the prediction is inaccurate; the selected response may be arbitrarily bad if something 

unexpected occurs. Predicting a broader distribution tends to encourage less risky actions, 

but may forgo higher payoffs. The hypothesis is that the parameterized distributional predic-
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Meta-Strategy Family 
ENS (8) 
RDS(S) 
LES (X) 

Candidate Parameter Settings 
0.01,0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.75,1.0 
0,0.11,0.22,0.33,0.44,0.55,0.66,0.77,0.88,0.99 
1, 5,10, 25, 50, 75, 100,250, 500, 1000 

Table 4.2 Meta-strategy parameter settings used in the experimental setup. 

tions made by ENS, RDS, and LES capture this tradeoff, and allow for a useful spectrum of 

predictions depending on the quality of observations available. If this is the case, we should 

observe a regular pattern in the preferred parameter settings as observation noise is varied. 

I set up an experiment to test the relative performance of different parameter settings as 

observation noise is varied. For each meta-strategy family, I selected 10 candidate parameter 

settings, which are listed Table 4.2. These are distributed across the interesting range for 

each family, with parameter settings at one extreme yielding predictions that are close to 

uniform random, and setting at the other end yielding predictions close to equilibrium. In 

this experiment, I test the parameter settings only against other members of meta-strategies; 

each parameter setting is a distinct meta-strategy. 

To compare the performance of the parameter settings, I define a performance metric 

based on stability in the meta-game. The homogeneous regret for each meta-strategy (i.e., 

parameter setting) is the regret e for the profile in which all players play according to the 

meta-strategy. Better performance on this measure is defined by lower regret. A lower regret 

means that there is less benefit (or higher loss) associated with switching the best alternative 

meta-strategy, within the constrained space of candidate meta-strategies (which for this ex­

periment consists of different parameter settings for the same family).' A desirable features 

of this measure is that it identifies meta-strategies that form equilibria of the meta-game in 

self-play. In most cases, these homogeneous profiles are among the most stable profiles that 

any given meta-strategy participates in, so this measure also provides a rough indication of 

7No single-dimensional measure of performance can accurately summarize the performance of a strategy 
in an arbitrary game. I experimented with several other measures, all of which support the results presented 
here. 
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the best-case stability for each meta-strategy. 

I present results for the uniform random class of games, using both the stochastic and 

incomplete observation models.8 For each observation model, I simulate the meta-games for 

a range of different noise levels. Each meta-game (corresponding to a specific noise level) 

is estimated based on 10,000 sample base games, with one observation of each game. The 

regret measure is computed from the average benefit to deviating over these sample games.9 

The plots in Figures 4.2,4.3, and 4.4 show the parameter setting with the best perfor­

mance as observation noise is varied, where performance is defined by the homogeneous 

regret measure. Two plots are shown for each family of meta-strategies, corresponding to the 

qualitatively different observation models. A general pattern is clear in data: as observation 

noise is increased, the meta-strategies with lowest homogeneous regret are those which 

make broader predictions about opponent play, distributing weight more evenly over the 

possible strategy profiles. Though the data is not presented here, this general pattern also 

holds for the other two classes of games described in Section 4.2. This appears to be a robust 

phenomenon, and supports the general intuition that solution methods should make less 

specific predictions about the outcome of a game when there is uncertainty about the game 

model. For the specific meta-strategies tested, this evidence supports the claim that these 

parameterizations capture (approximately) the effects of observation noise on opponent play, 

and do so in a way that improves strategy selection. 

4.4 Benchmarking the Meta-Strategies 

In this section I present direct comparisons between the families of meta-strategies. I test 

the candidates using several combinations of different game classes and observation models. 

Results are presented using the same homogeneous regret metric as the previous experiment, 

8I ran the same experiment on the other two game classes and observe an identical qualitative result. 
9Given the large sample size, the confidence intervals for the regret measures are very small (on the order 

of 10~4). However, in some cases the difference in regret for neighboring parameter settings is also very small, 
and the parameter settings are almost equivalent. 
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Figure 4.2 Most stable settings of the ENS parameter x across different levels of noisy observa­
tions on random games. Results for the stochastic observation model are on top, and the incomplete 
observation model on the bottom. Higher settings of x correspond to predictions that are closer to 
random play. Observation noise is increasing left to right. 
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Figure 4.3 Most stable settings of the RDS parameter S across different levels of noisy observa­
tions on random games. Results for the stochastic observation model are on top, and the incomplete 
observation model on the bottom. Higher settings of 8 correspond to predictions that are closer to 
random play. Observation noise is increasing left to right. 
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Figure 4.4 Most stable settings of the LES parameter X across different levels of noisy observa­
tions on random games. Results for the stochastic observation model are on top, and the incomplete 
observation model on the bottom. Lower settings of A correspond to predictions that are closer to 
random play (opposite of ENS and RDS). Observation noise is increasing left to right. 
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defined in Section 4.3. For each candidate meta-strategy, performance is measured as the 

regret for the homogeneous profile where all players use the same meta-strategy. The 

experiments test a single instance of each family of meta-strategies, with the addition of 

BRU as a benchmark (defined in Section 3.3). I set the parameters for the meta-strategies 

using the results of the previous section, which tested 10 possible parameter settings for each 

meta-strategy in a self-play setting. The parameter settings for each meta-strategy family 

vary according to the context, including the game class, observation model, and noise level. 

The same procedure is used to set parameters for all three families, selecting the setting with 

minimum homogeneous regret in self-play for the same context. 

There are two reasons to restrict the experiments to a single parameter setting for each 

meta-strategy family. One is to keep the computational cost for simulating and analyzing 

the meta-games manageable. The other is that the regret measure presented is based on 

deviations between different meta-strategies. If the candidates include more than one pa­

rameter setting for a meta-strategy family, the meta-strategies from the same family often 

exhibit very similar performance. This affects the measured regret in cases where the best 

alternative is a different parameter setting from the same family. Some interesting features of 

the data can be masked by this, particularly in cases where there is a large loss for deviating 

to another family of meta-strategies, but a small loss for deviating to a different parameter 

setting within the same family.,0 

My experiments consider six categories of meta-games that combine the three game 

classes and two observation models from Section 4.2. Within each of these categories, I 

vary the level of uncertainty as in previous experiments, and the meta-strategy parameter 

settings as previously described. For each category and level of uncertainty, I estimate the 
10It is possible to run similar experiments using multiple instances of each family with different parameter 

settings, but the results are more difficult to parse. The first issue is the effect of including similar meta-
strategies on the regret measure. This causes regrets to cluster around zero rather than go into negative territory, 
losing some granularity for low-regret meta-strategies (positive regrets are still observed). The other is that 
plots showing more than a few meta-strategies become increasingly difficult to read. In preliminary tests, I did 
not find any instances where including additional meta-strategies from the same family led to qualitatively 
different conclusions about the relative performance of the families. 
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meta-game using 10,000 sample base game instances, which a single observation of each 

base game. The results are presented in Figures 4.5, 4.6, and 4.7, showing performance on 

the homogeneous regret measure for the three meta-strategy families and the BRU base­

line.1 ' On this measure, lower values indicate stronger performance. Any value less than 0 

is particularly interesting, as it indicates a homogeneous profile that is a Nash equilibrium 

of the constrained meta-game; in other words, there are no beneficial deviations from this 

meta-strategy if all players use it. Negative values on this measure indicate the size of 

the loss that players would expect for using the next-best alternative among the remaining 

candidates. 

The first interesting feature of the experimental data is that homogeneous profiles of 

ENS, RDS, and LES are all meta-strategy equilibria for low noise levels in both the random 

and common interest game classes. This is not especially surprising since all three methods 

play according to approximate equilibria of the base game in this case. More interesting 

is that deviations between families often result in significant net losses. This is evidence 

of a coordination effect. Players using the same meta-strategy tend to coordinate on the 

same equilibrium of the complete information game when there is low noise, but different 

families of meta-strategies tend to select different equilibria. The differences among the 

meta-strategies are generally greatest at low- and mid-range noise levels, indicated by larger 

regret magnitudes in these ranges. As observations become very noisy, the regret for the 

meta-strategies generally converges to zero (with the exception of BRU for the incomplete 

observation model). This is also intuitive; under very noisy conditions, the outcome of any 

analysis depends largely on the noise and the final selections are close to random for all 

meta-strategies. 

The most striking result is the strong performance of the LES family of meta-strategies 
llThe 95% confidence intervals are shown in the plots, but are too small to distinguish in most cases, since 

the intervals are roughly 1(T4. The intervals are computed by finding the benefit to deviating between the 
relevant pair of meta-strategies in each individual base game sample, and taking the variance of these data 
points. Most of the variation observed in the data points comes not from sampling noise associated with the 
base game and observations, but from the effects of varying the parameter settings fro each meta-strategy in 
the different contexts. 
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across the range of tested conditions. The homogeneous profile of this meta-strategy is 

almost always an equilibrium of the constrained meta-game. In many cases, it is the only 

equilibrium among the homogeneous profiles. When there are multiple equilibria, LES often 

forms the equilibria with maximal loss for deviations. The performance of LES relative 

to the other meta-strategies is especially strong when there is moderate uncertainty. In all 

six combinations of game class and observation model, LES forms the only homogeneous 

equilibrium in (roughly) the middle third of the range for observation uncertainty. In this 

range the meta-strategies typically have large incentives to deviate to LES. 

There is one exception where there are significant incentives to deviate from the ho­

mogeneous LES profile. This occurs for low noise levels in constant sum games; in these 

cases, RDS forms an equilibrium. A distinctive feature of this class of games is that the 

instances frequently possess only mixed-strategy equilibria. Additional analysis of this case 

reveals that this is to some extent an artifact of computing a best-response to the predictions. 

The LES meta-strategy identifies very close approximations to equilibria of the compete 

information game when observations have little or no uncertainty. If the meta-strategy 

simply played the strategy specified in the equilibrium, there is no beneficial deviation of 

the magnitude observed in the data. However, the meta-strategy actually selects a strategy 

that is a best-response to the equilibrium. This computation selects the pure strategy with 

the maximum expected payoff, given the predicted distribution over opponent play.'2 There 

may be beneficial deviations from these pure strategies. This phenomenon suggests that 

there may be benefits to considering meta-strategies that use softmax or other methods to 

compute mixed-strategies in the best-response computation. 

12In the case of ties, a uniform mixture over the pure strategies is used. However, this rarely happens due to 
numerical approximation—even in the case of mixed-strategy equilibria, when all pure strategies played with 
positive probability theoretically have the same expected payoffs. 
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Figure 4.5 Uniform random games. Comparison of four meta-strategies playing uniform random 
games with stochastic observations (top) and incomplete observations (bottom). 
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Figure 4.6 Common interest games. Comparison of four meta-strategies playing common interest 
games with stochastic observations (top) and incomplete observations (bottom). 
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Figure 4.7 Constant sum games. Comparison of four meta-strategies playing constant sum games 
with stochastic observations (top) and incomplete observations (bottom). 
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4.5 Discussion 

The logit equilibrium family of meta-strategies emerged as the clear champion in my experi­

ments, with compelling performance across a range of meta-games. This result establishes a 

baseline against which future strategy selection methods may be tested. It also has immediate 

relevance for applications of empirical game-theoretic analysis, such as the one presented in 

Chapter 2. The results suggest that logit equilibrium should play a central role in analyzing 

the estimated games produced in these applications, especially if strategy selection is the pri­

mary objective. For practical reasons, it is especially encouraging that meta-strategies from 

the LES family performed well across varying conditions. The high-level approach used by 

LES to factor noise into the equilibrium predictions generalizes to give good approximations 

for the range of game classes and observation models considered. In my experiments, I used 

initial evidence to tune the parameter of this method to the specific meta-games.I3 The data 

contain some indications that there is hope for generalizing even these parameter settings 

using gross characterizations of the model. In Figure 4.4, the pattern of parameter settings 

selected is remarkably similar across the two observation models, varying in a regular way 

with the level of uncertainty in the observations. 

Logit equilibrium is also of broader interest because it explains many qualitative aspects 

of human behavior that are not predicted by Nash equilibrium (McKelvey and Palfrey, 

1995; Anderson et al., 2001; Capra et al., 1999). My results support logit equilibrium based 

on a different set of motivations, and provide a new perspective on the success of this 

solution concept in the behavioral setting. Humans participate in frequent interactions with 

others, and many of these have relatively low stakes. Under these conditions, it is quite 

reasonable to expect humans to adopt general methods for strategic reasoning that can be 

easily adapted to different contexts. Uncertainty is also ubiquitous in these interactions, and 

may be ascribed at least in part to payoff uncertainty. My results provide some justification 

13 Applications of logit equilibrium to analyze empirical data typically use maximum likelihood methods to 
estimate the parameter X (McKelvey and Palfrey, 1995; Capra et al., 1999). 
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for logit equilibrium under similar conditions, where uncertainty is a principal feature of the 

strategic setting and general methods are preferable. 

Another principle supported by my experimental results is that broader predictions of 

play are preferable to narrow predictions when there is uncertainty about the game. This is 

particularly relevant to the practice of applying complete information equilibrium concepts 

to estimated game models. My results show that these predictions are not robust to the 

presence of substantive uncertainty (see Section 3.3 for the most direct evidence for this 

point). In realistic applications of game theory where uncertainty and ambiguity are the 

norm, strategic reasoning that relies too heavily on strong informational assumptions is 

unlikely to yield desirable results. This is also relevant to the literature on equilibrium 

refinements that seek to narrow the predictions of the Nash equilibrium model, ideally to 

a unique prediction. While such definitive predictions are satisfying from a theoretical 

perspective, new solution concepts that broaden the predictions of the model may be more 

useful in practice. I investigate strategy selection methods that make broader predictions 

by generalizing complete information equilibrium concepts. These methods retain many of 

the essential features of the strategic reasoning employed by these concepts, but offer better 

performance under uncertainty. 

4.6 Related Work 

Many works in game theory have considered the question of how payoff uncertainty affects 

game-theoretic analysis. In one of the first theoretical applications, Harsanyi (1973) showed 

that small payoff perturbations can motivate mixed strategies. Payoff noise has also been 

used to motivate many of the equilibrium refinements introduced in the literature, including 

trembling-hand perfection (Selten, 1975) and proper equilibrium (Myerson, 1978). Fuden-

berg et al. (1988) and Dekel and Fudenberg (1990) investigate the robustness of solution 

concepts for complete information games to the introduce of small amounts of payoff noise. 
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In global games (Carlsson and van Damme, 1993), the lack of common knowledge resulting 

from payoff noise can lead to a unique equilibrium selection. This was shown first for 

2-player, 2-action games, but later extended more general settings (Frankel et al., 2003). 

Similar results showing that noise can lead to the selection of particular equilibria have also 

been derived for evolutionary models (Foster and Young, 1990; Kandori et al., 1993; Blume, 

2003). 

A common feature of these models is that they derive results for limiting cases with very 

small payoff perturbations. My interest here is in cases where noise terms do not vanish, but 

play a significant role in the analysis. In addition to quantal-response equilibrium (which 

was a candidate meta-strategy), there are several other models in which noise does not 

vanish in the limit. An earlier example is imperfect equilibrium, in which players attempt 

to implement a target strategy, but make mistakes in doing so (Beja, 1992). More recently, 

Goeree and Holt (2004) have developed a model of noisy introspection that has many simi­

larities to quantal-response equilibrium. The cognitive hierarchies model (Camerer et al., 

2004) focuses on the reasoning used by players, rather than payoff uncertainty. However, 

the resulting solution method shares some common features with behavioral models based 

on payoff uncertainty. 

The meta-strategies I study in this chapter seek to maximize payoffs in the expected case 

by making distributional predictions. There are other approaches to dealing with uncertainty 

in games, including worst-case analysis and set-based solution concepts. Tennenholtz (2002) 

proposes competitive safety analysis, which seeks to guarantee agents a large fraction of 

the payoff they could receive by playing an equilibrium strategy (in some cases, the entire 

value). The robust game theory paradigm introduced Aghassi and Bertsimas (2006) deals 

specifically with payoff uncertainty, with the objective of maximizing performance for the 

worst-case realization of payoffs. Another broad approach to making broader predictions 

about game play is predicting sets of possible solutions. Two solution concepts that take 

this approach are rationalizable strategies (Beraheim, 1984; Pearce, 1984) and closed under 
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rational behavior (CURB) subsets (Basu and Weibull, 1991). 

Modeling the behavior of human players in an important goal for game theory. One of 

the interesting aspects of my results is that the logit equilibrium methods I find most effec­

tive for playing meta-games is also one that has achieved significant success in explaining 

behavioral results. One possible reason for this is that humans behave as if they are uncertain 

about the payoffs, even in very controlled laboratory conditions. This is quite plausible, as 

it may be difficult to induce certainty about the game, even in idealized settings (Weibull, 

2004). There have been many empirical studies that evaluate how closely theoretical models 

fit the data generated by human subjects in laboratory settings (Erev and Roth, 1998; Goeree 

and Holt, 2001; Friedman, 1996; Hopkins, 2002; McKelvey and Palfrey, 1995). Several 

focus explicitly on how well humans are able to learn or play games in limited information 

settings (Chen and Khoroshilov, 2003; Meyer and Roth, 2006; Oechssler and Schipper, 

2003). My meta-game analysis offers a evidence of a different sort, evaluating how well 

proposed algorithms (e.g., logit equilibrium) perform in normative settings. Haile et al. 

(2008) raises specific concerns about the testability of the quantal-response equilibrium 

model by showing that the basic model places no testable restrictions on the empirical 

data that can be observed from a single sample game, due to the power of the noise terms 

in fitting the data. While the logit equilibrium model is more restrictive and does make 

testable predictions, this is a legitimate concern for testing complex behavioral models using 

behavioral data. My experimental framework is particularly suited to running tests across 

many game instances, offering a complementary means of testing behavioral models that 

avoids this problem to some degree. 
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Chapter 5 

Exploration Policies for Large Games 

For games with large strategy spaces, exhaustive analysis based on enumerating the payoffs 

for all strategy profiles is often infeasible. This is one of the key reasons that classic games 

such as chess are challenging to solve. It is not difficult to determine the payoffs for any spe­

cific instance of game play, given the sequence of moves. However, enumerating all of the 

possible paths of game play is well beyond the capabilities of any modern computer—even 

the specially-designed supercomputer Deep Blue (Campbell et al., 2002). 

In this chapter I consider the setting where players can observe the payoffs for only a 

limited subset of pure-strategy profiles. This is similar to the incomplete observation model 

investigated in Chapter 4, except that players have control over the profiles they observe. 

Jordan et al. (2008) refer to this as the reveal-payoff model of observation, and I adopt this 

terminology for the remainder of the chapter. A player either knows all of the payoffs for 

a strategy profile with certainty, or has no (direct) information about the payoffs. Players 

may execute sequential queries to evaluate the payoffs for a pure-strategy profile. Limits on 

the amount of information players receive are modeled as bounds on the number of queries 

allowed. In general, each choice of which profile to evaluate may depend on the history 

of payoffs already revealed. Section 3.1.3 contains additional discussion of this mode of 

directed observation in the context of the meta-game model. 

An exploration policy describes how a player chooses which profiles to evaluate. The 

central question of this chapter is to identify good exploration policies that yield valuable 
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observations. In general, the quality of the observation will depend on the task for which the 

information is used. Here I consider both an equilibrium confirmation task and the strategy 

selection task from the previous chapter. An equilibrium is said to be confirmed when all 

deviations have been tested and no beneficial deviations have been found. One of the keys 

to a good exploration policy is exploiting structural regularities in the game. I begin with a 

case study of chaturanga (a four-player variant of chess) that provides evidence of structure 

in this game, and proposes some ways to exploit it in this domain. I test these intuitions in a 

more abstract setting, evaluating candidate exploration policies on broad classes of games 

with known structural properties. The candidates are all able to exploit various types of 

structure, both to find equilibria quickly and improve strategy selection. 

5.1 Chaturanga 

Chaturanga is a variant of chess for four players. The starting configuration of the game 

board is shown in Figure 5.1. Each player controls eight pieces: one king, rook, knight, and 

boat, and four pawns. The king, rook, and knight all move in the same way as the standard 

chess pieces. The boat moves diagonally in any direction, but must jump over exactly one 

square. Pawns advance and capture in the standard way, based on the player's orientation 

on the board. They do not have an initial double move. Upon reaching the final square, 

they may promote to any other type of piece except king. There is no notion of check or 

checkmate;1 players are eliminated only when their king is taken. The pieces of eliminated 

players remain on the board as obstacles, but cannot move. The game ends when a single 

king remains, an identical position occurs three times during the game, or each player has 

made at least 50 consecutive moves without moving a pawn or capturing a piece.2 At the 

end of the game, payoffs are determined by dividing one point equally between all players 
1 Unlike standard chess, taking an opponent's king when possible might not be the best move, since the 

game continues against the remaining opponents. 
2These stopping conditions guarantee that games are finite. 
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Figure 5.1 The game board for chaturanga. 

with a king remaining; all other players receive a payoff of zero. 

5.1.1 A Parameterized Strategy Space for Chaturanga 

A strategy for chaturanga defines a move for each possible board configuration. The first 

challenge in designing a strategy for this domain is that the number of possible board 

configurations is extremely large. In his original paper, Shannon (1950) gives a rough 

estimate (not accounting for reachability) that chess has 1043 legal board positions.3 This 

3The exact number is very difficult to determine, and remains unknown. 
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estimate also holds for chaturanga, which is played on the same size board with the same 

number of pieces. A tabular representation that specifies a move for each of these positions 

is too large to even fit into the memory of a modern computer. Programs for playing chess 

and similar board games typically solve this representational difficulty using an evaluation 

function. This function defines a value for each possible board configuration—typically 

interpreted as an estimate of the probability that each player will win the game from the 

given configuration (Thrun, 1995). An evaluation function may be used in conjunction with 

game tree search, which looks ahead in the game by considering possible sequences of 

moves. 

I define a parameter space for chaturanga which adopts these methods from chess-

playing programs, using both an evaluation function and game-tree search. The evaluation 

function and search procedure are defined by a set of parameters. These parameters define a 

transformed strategy space for chaturanga; settings of these parameters are valid chaturanga 

strategies, but the parameter space may not include all strategies in the original strategy 

space. Strategies in this space can be represented compactly, and the space is more amenable 

to analysis than the original strategy space. However, this transformation may modify the 

objective of the analysis. For instance, rather than identify the best strategy globally, the 

goal may be to identify the best strategy within the parameter space. 

Evaluation Function 

The evaluation function assigns a value, 5core,(C), for each of the four players, given any 

given a legal board position C. Ideally, these values are predictions of the expected payoffs 

for each player when play continues from the given position. The evaluations are based on 

primitive features computed for each board position, representing factors such as material 

value, threats to pieces, protected pieces, control of board squares, and mobility of the king. 

Many specific features are motivated by features commonly used in chess programs, such 

as KnightCap (Baxter et al., 2000). The features are first combined to form an estimate of 
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the raw strength of each players' position, denoted Rt(C). Each piece P has an associated 

value V(P) and threat level T(P), with the king K treated separately due to its special role. 

Intuitively, the threat level is the probability that the piece will be captured in the near future. 

Both V(') and T(-) are in turn defined by weighted combinations of the more primitive 

board features. Each feature has a weight, which depends on the type of the piece. These 

weights are the primary parameters of the evaluation function; there are roughly 60 of these 

weights in total. The functional form for positional strength combines these elements: 

Ri(C) = T(K) £ T(P)V(P) + V(K) 
,Pe{pieces\K} 

(5.1) 

In standard chess, the game has only two players and the payoffs are zero-sum. Translat­

ing the relative position strengths into an outcome prediction is relatively straightforward in 

this case. A complication arises in chaturanga due to the number of players: there are three 

pairs of players, and the relative strengths of these players need not be weighted equally in 

the evaluation. There is generally a non-linear relationship between the relative strengths of 

the players and the probability of winning.4 I use a sigmoid function to represent pairwise 

comparisons for all players i and j : 

PWi^ = i + e-*AWC)-Rj(C))V ( 5 , 2 ) 

The multiplier JQJ can be used to change the weight placed on differences in strength 

between each pair of players in the final evaluation. This is also a parameter of the evaluation 

function, and plays a particularly important role in my experiments. The pairwise strengths 

are combined and normalized to give the final value for each player: 

Scorei(C)= [ ] PW^- <5-3) 
je{players\i} 

4In standard chess, a difference in strength equivalent to one pawn typically equates to near-certain victory 
(Baxter et al., 2000). 
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Game-Tree Search 

Games with sequences of deterministic moves (like chaturanga) can be represented as a 

game tree. Each node in the tree represents a legal sequence of moves, and the edges repre­

sent the individual moves. Minimax search is a standard technique for searching portions of 

the game tree during a game. Starting from the current state, the search expands possible 

paths of play, typically stopping before a terminal state in the game. Each level of the tree 

corresponds to the possible moves for one player. Leaf nodes in the game tree are evaluated 

using the evaluation function. The values in these leaf nodes are propagated back up to the 

root of the tree using backwards induction, selecting the best move for the current player at 

each level of the tree. Variations of minimax search are used by virtually all chess programs, 

often with sophisticated methods of search control. Exactly why exactly minimax search 

improves play is not fully understood (Lustrek et al, 2005), but it works extremely well in 

practice. The standard version of minimax search applies only to 2-player games, but an 

algorithm called max^ (Luckhardt and Irani, 1986) extends minimax to iV-player games. 

Sturtevant (2003) has studied several variations of this algorithm, including different pruning 

methods. 

My strategy space for chaturanga contains two version of max^. The first uses depth-

limited depth-first search that expands all paths of play to a fixed depth. The second uses 

beam search, which expands only a fixed number of nodes with the highest values at each 

level of the game tree. This allows a deeper search for a given number of node expansions, 

but ignores some lines of play. These search procedures are part of the parameter space for 

chaturanga, in addition to the parameters of the evaluation function. 

5.1.2 Strategic Independence in Chaturanga 

The parameterized strategy space for chaturanga provides a compact representation for 

strategies, but transforms a game with a finite strategy space into one with an infinite strategy 

space by introducing continuous parameters. This does nothing to mitigate the problem of 
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analyzing a large space of strategic choices. One general approach to solving large problem 

instances is to exploit structural properties. For chaturanga, this means identifying likely 

structural properties of the parameterized strategy space, and finding methods capable of 

exploiting them for game analysis. A natural candidate is some form of independence 

relationship between choices in the game. Several existing representations for games capture 

forms of independence, including multi-agent influence diagrams (MAIDs) (Roller and 

Milch, 2003), graphical games (Kearns et al., 2001), and action-graph games (Jiang and 

Leyton-Brown, 2006). These representations are potentially smaller than normal-form 

representations of the game, and researchers have exploited these compact representations 

to derive more efficient solution algorithms (e.g., for finding Nash equilibria). 

Separating Strategic Parameters from Independent Parameters 

The form of structure chaturanga may have is unknown, so one approach is to hypothesize 

some form of structure and look for supportive evidence. One indication that there may be 

regularities in the strategy space for chaturanga comes from analogy with chess. Ranking 

systems are very popular for chess and other competitive games (Stefani, 1997). The exis­

tence of a good ranking implies at least a weak form of transitivity, in that higher-ranked 

players are expected to beat all players of lower rank. Chess players are typically ranked 

using a numerical score computed from the results of tournament play (Glickman, 1995)."' 

In the statistical models that underlie the rankings, this score reflects strength of each player. 

The winner for any match is determined by comparing the relative strengths of the players, 

with some noise. 

One intuitive explanation for the transitivity implied by these rankings is that strong 

players are good at optimizing decisions that do not depend (much) on their opponent. This 

notion of strategic independence can be formalized as follows.6 Suppose each player's 
5Humans may use different strategies in different games, but it seems likely that they at least choose similar 

strategies. If this is the case, ranking players and ranking strategies is (roughly) analogous. 
6 A similar notion is defined by Roller and Milch (2003) for MAIDs. 
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strategy space is defined by a vector of decision variables Si — (Xt,... ,X-) (in the previ­

ously defined chaturanga strategy space, these correspond to settings of parameters). If 

Ui(s) = U{(^) for all pairs of pure-strategy profiles s and s/ that differ only in the choices for 

the two decision variables Xf and Xj\ then Xf is strategically independent of Xj\ In other 

words, the choice of Xf for player i does not depend on player y"s choice for the variable 

Xj, because the payoffs are the same for all cases. The relationship is not necessarily 

symmetric, as player / s payoffs are allowed to vary for different combination of these 

two choices. It is plausible that some parameters in the chaturanga strategy space could be 

optimized independently of other players' choices* at least approximately. Some moves, 

such as defending or moving a king in danger, are likely to be good tactical decisions against 

virtually any set of opponents. On the other hand, high-level choices such as which opponent 

to attack may depend on analogous choices made by others. 

Separating parameters that are strategically independent from parameters that have 

strategic interactions could aid game-theoretic analysis, by focusing strategic reasoning 

on the smaller strategy space defined by the strategic parameters. As a proof of concept, 

I propose one possible separation of the strategy space for chaturanga into strategic and 

independent parameters. In Section 5.1.3,1 discuss experimental evidence for this separation 

of the parameter space. I single out a single parameter for strategic analysis. This parameter 

manipulates the value of KJJ in Equation (5.2). Different weights are assigned to each pair 

of players in the evaluation function, and these weights depend on the spatial orientation of 

the players. As the weight placed on an opponent increases, a player will behave more ag­

gressively towards that opponent, favoring moves that maximize the differences in positional 

strength between the two players. 

For easy visualization, I project the pairwise weights into a single dimension called the 

attack angle. Nine possible settings of the parameter are shown in Figure 5.2. If the angle 

points directly at one opponent, almost all of the weight is placed on differences with that 

opponent in the evaluation. If the angle lies between two opponents, the weight is distributed 
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Figure 5.2 Nine settings of the attack angle parameter (left), and equal weighting of differences 
(right). 

proportionally between those two opponents, ignoring the third. Also shown in the diagram 

is strategy 9, which weights all opponents equally. This strategy is the default weighting, 

but is not within the attack angle space.7 

Local Search for Approximate Best-Response 

If the parameterized strategy space I describe for chaturanga does have parameters that are 

strategically independent of others, how can this be exploited? Put another way, how should 

parameters that are strategically independent be optimized? Computing a best response to 

a fixed strategy profile is one possible approach. This computation only needs to test the 

possible deviations from the fixed profile, so it does not require knowledge of the payoffs 

for the full profile space. A best response selects the optimal value for all parameters, in the 

context of specific opponent strategies. The key observation is that the optimal setting for a 

parameter that is strategically independent of some opponent choices is also a best response 

to many other profiles that have not been considered. If the parameter is independent of all 
7The attack angle parameter can specify weights on only two players, due to the projection into one 

dimension. 
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opponent choices, then the setting is already a global optimum after a single best-response 

computation. Best-response computations can be applied iteratively, in a process known 

as best-response dynamics (Fudenberg and Levine, 1998). In several classes of structured 

games, best-response dynamics is known to converge to Nash equilibrium, including super-

modular games (Milgrom and Roberts, 1990) and potential games (Monderer and Shapley, 

1996). 

The parameterized chaturanga strategy space is infinite, so it is not feasible to compute 

exact best-responses. However, local search methods can approximate best-responses to a 

fixed strategy profile. Reinforcement learning is one technique that could be used for local 

search. There is a long history of using reinforcement learning to approximate evaluation 

functions for similar games: chess (Baxter et al., 2000), checkers (Samuel, 1959), and go 

(Schraudolph et al., 1994). The learned evaluation function depends on the opponents in the 

data set. If the set of opponents is fixed, learning will approximate a best response to the 

fixed set of opponents. 

A common approach in practice is to learn using self-play as a training procedure. All 

players use the same evaluation function to play a game, and then update their evaluation 

functions using the learning rule before playing the next game. Learning in self-play is 

very much like best-response dynamics. Each learning update approximates a best response 

to the current profile. The profile is updated to reflect these best responses by using the 

new evaluation functions for the next game. The primary difference between best-response 

dynamics and self-play learning is that learning does not compute an exact best response— 

only a rough approximation. For chaturanga, it is possible that reinforcement learning in 

self-play could eventually converge to a profile of equilibrium strategies within the parameter 

space, but mis is not guaranteed.8 However, even if it does not converge it could still be a 

useful tool for strategic reasoning. One possibility is to use this learning method to generate 

candidates for more intense game-theoretic scrutiny. These candidates would already have 

8Best-response dynamics may not converge in arbitrary games, and reinforcement learning using function 
approximation may also fail to converge to an optimal response. 
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optimal settings for independent parameters, as described above. 

I use the standard TD(A) reinforcement learning algorithm (Sutton and Barto, 1998) to 

learn approximate evaluation functions for chaturanga from simulated game data. For each 

game played, there is a sequence of board configurations that lead to the final outcome. A 

learning update is performed for each configuration. The error is defined by the difference 

between the payoffs predicted for the configuration, and the payoffs at the end of the game. 

The update takes a step in the direction of the gradient that maximally reduces the error. I use 

numerical approximation to estimate the gradient, testing small changes in each parameter 

to determine the effect on the error. The magnitude of the update depends on three factors: 

the magnitude of the error, a learning rate parameter, and the number of steps the board 

configuration is end of the game. Error is discounted further from the end of the game, using 

the rate given by the parameter A of the TD algorithm. 

5.1.3 Experiments 

I present experimental evidence collected for two sets of chaturanga strategies.9 Each 

strategy is defined by a vector of parameters specifying the evaluation function and online 

search mechanism. I introduce a small amount of noise into the strategies by forcing them 

to select a random move 5% of the time. This introduces variation into the games played 

between any given set of strategies. For each set of strategies, I estimate the payoffs for 

profiles of these strategies using a simulator for playing chaturanga games.10 

The first set of strategies varies only the attack angle parameter described above. The 

second set holds the attack angle fixed (to the equal weighting), and varies the other pa­

rameters of the evaluation function and online search. I consider the 9 attack angle settings 

shown in Figure 5.2, as well as the uniform weighting. They are labeled using the indices in 

the figure. For this 4-player, 10-strategy game, I gathered at least 50 samples of the payoffs 
9The data presented were collected for exploratory purposes, and are not specifically designed to test the 

hypotheses studied. Nevertheless, the data do provide some relevant evidence. 
10The simulator was developed by Matt Abrams of Cougaar Software. 
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Table 5.1 Results of regressions for a player's score and the attack angle weights placed on the 
player. 

Sum of weights from all opponents 
Weight from right player 
Weight from left player 
Weight from diagonal player 

R> 
0.36 
0.25 
0.14 
0.03 

Coefficient 
-0.14 
-0.20 
-0.07 
-0.15 

Table 5.2 Pure-strategy profiles with minimum regret in the attack angle strategy space. 
£ 

0.04 
0.05 
0.05 
0.06 
0.06 
0.06 
0.06 
0.06 
0.06 
0.06 

Profile 
[7,8,8,2] 
[8,7,4,7] 
[7,1,8,8] 
[2,5,8,7] 
[9,7,4,7] 
[9,9,9,7] 
[9,7,5,8] 
[9,9,5,3] 
[4,0,7,7] 
[4,7,8,6] 

Scores 
[0.22,0.23,0.21,0.33] 
[0.24,0.38,0.27,0.11] 
[0.16,0.29,0.18,0.37] 
[0.09,0.26,0.52,0.12] 
[0.25,0.46,0.17,0.13] 
[0.17,0.37,0.23,0.24] 
[0.40,0.12,0.32,0.16] 
[0.44,0.25,0.15,0.17] 
[0.26,0.24,0.12,0.38] 
[0.12,0.42,0.15,0.31] 

for each of the 10000 pure-strategy profiles. To verify that the attack angle actually has 

an impact on the scores of the players, I ran several linear regressions, shown in Table 5.1. 

Recall the attack angle parameter manipulates the weight placed on each opponent by a 

player's evaluation function. The weights in the table are the weight place on each player by 

various opponents, and correspond roughly to the strength of the opponents' attacks. Players 

who are the focus of other players' attacks do tend to have lower scores on average. The 

most potent attacks come from the player to the right, who can employ advancing pawns 

most easily in the attack. 

The 10 most stable pure-strategy profiles for the attack angle space are shown in Ta­

ble 5.2. Additional statistics summarizing other aspects of the data for the attack angle space 

are presented in Table 5.3. There is no pure-strategy Nash equilibrium in this space, and a 

diverse set of strategies appear in these 10 profiles. This demonstrates that each player's 

choice of attack angle is not independent of other players' attack angles. If these choices 
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Table 5.3 Statistics summarizing the data for the attack angle strategy space. Score is the average 
score over all profiles. Dev Benefit is the average benefit for deviating from the strategy to any other 
strategy. % Positive Dev is the percentage of deviations from this strategy that result in a net gain. 
The top X% columns show how often (as a percentage) each strategy appears in the given fraction of 

>ure-strateg] 
Strategy 
0 
6 
3 
1 
5 
2 
4 
7 
8 
9 

y prohles 
Score 
0.214 
0.222 
0.238 
0.245 
0.246 
0.248 
0.255 
0.263 
0.279 
0.289 

with minimum 
Dev Benefit 

0.04 
0.031 
0.013 
0.005 
0.004 
0.003 

-0.006 
-0.015 
-0.032 
-0.043 

regret. 
% Positive Dev 

66.3 
62.7 
54.9 
51.9 
51.2 
50.3 
47.0 
43.2 
36.4 
32.1 

top 5% 
4.5 
4.7 
8.2 
8.3 
9.8 
9.0 

11.8 
13.2 
14.3 
16.2 

top 1% 
2.2 
2.5 
5.5 
5.2 

12.5 
6.8 

12.0 
15.2 
16.2 
21.8 

top 0.1% 
2.5 
2.5 
2.5 
2.5 
7.5 
5.0 

10.0 
30.0 
20.0 
17.5 

were independent, there would be a dominant strategy for each player. Nor is this simply a 

case where all strategies are essentially equivalent, since the regressions clearly indicate that 

these choices do have an impact on payoffs. The attack angle is at least one instance of a 

parameter with strategic implications in the parameterized chaturanga strategy space. 

The second strategy space varies parameters of the evaluation function and the online 

search method. I refer to this as the evaluation/search strategy space. There are 17 strategies 

in this space, briefly described in Table 5.4. The strategies were not generated using one 

particular methodology, but are diverse exemplars of possible parameter settings. Some 

have hand-crafted evaluation functions, while others were learned using the reinforcement 

learning method described above. Several of the evaluation functions are paired with dif­

ferent online search methods; unless otherwise specified, all strategies evaluate only the 

states resulting from the next move. There are a total of 174 = 83521 profiles in this strategy 

space, and I collected at least 30 payoff samples for 7863 of these profiles, approximately 

9% of the total profile space. 

There are two pure-strategy Nash equilibria within this strategy space, and two other 

profiles with low regret. These are listed in Table 5.5. All of the deviations have been 
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Table 5.4 Strategies in the evaluation/search strategy space. A search ply represents a single move 
by a single player. 

Strategy 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Description 
Random. Selects uniformly at random from available moves. 
Hand-set 1. Hand-set weights. 
Hand-set 2. Hand-set weights. 
Material only. Weights for material (pieces) only. 
Learn 1. Learned (1000 games self-play) 
Learn 2. Learned (3000 games self-play) 
Hand-set 3. Hand-set weights. 
Learn 3. Learned (2000 games self-play) 
Learn 4. Learned (1240 games, fixed opponent profile) 
1 DFS. 2-ply DFS using strategy 1 evaluation function 
1 Beam. 5-ply beam search using strategy 1 evaluation function 
2 DFS. 2-ply DFS using strategy 2 evaluation function 
2 Beam. 5-ply beam search using strategy 2 evaluation function 
3 DFS. 2-ply DFS using strategy 3 evaluation function 
3 Beam 5-ply beam search using strategy 3 evaluation function 
7 DFS. 2-ply DFS using strategy 7 evaluation function 
7 Beam 5-ply beam search using strategy 7 evaluation function 

Table 5.5 Pure-strategy profiles with minimum regret in the evaluation/search strategy space 
e 
0 
0 

0.05 
0.02 

Untested Deviations 
0 
0 
0 
1 

Profile 
[15,16,16,16] 
[16,16,16,15] 
[15,15,16,16] 
[16,16,16,16] 

Scores 
[0.15,0.25,0.30,0.30] 
[0.23,0.15,0.37,0.25] 
[0.33,0.20,0.23,0.23] 
[0.13,0.30,0.33,0.23] 

tested for these profiles, with the exception of one deviation from profile [16,16,16,16]. The 

profile [15,15,16,16] has a beneficial deviation to the equilibrium profile [15,16,16,16]. The 

beneficial deviation for the profile [16,16,16,16] is to the equilibrium profile [16,16,16,15]. 

There are no other candidate equilibria in the data set that have an £ bound of less than 

0.05 and fewer than 44 untested deviations. Additional summary statistics are provide in 

Table 5.6. 

By any measure, strategies 15 and 16 are clearly the strongest in the exploratory strategy 

space. They are the only ones to appear in the pure-strategy Nash equilibria, and have much 

higher average scores than all other strategies. These are the two strategies within this space 
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Table 5.6 Statistics summarizing the data for the evaluation/search strategy space. Score is the 
average score over all profiles. Dev Benefit is the average benefit for deviating from the strategy to 
any other strategy. % Positive Dev is the percentage of deviations from mis strategy that result in a 
net gain. The top X% columns show how often (as a percentage) each strategy appears in the given 
fraction of the pure-strategy profiles with minimum regret. 

Strategy 
3 
0 
11 
12 
2 
1 

14 
10 
6 
9 
4 
13 
8 
7 
5 
15 
16 

Score 
0.049 
0.051 
0.054 
0.064 
0.089 
0.105 
0.110 
0.177 
0.199 
0.213 
0.221 
0.255 
0.280 
0.353 
0.383 
0.480 
0.481 

Dev Benefit 
0.160 
0.183 
0.146 
0.143 
0.148 
0.131 
0.078 
0.034 
0.019 
0.019 
0.009 

-0.011 
-0.041 
-0.110 
-0.155 
-0.266 
-0.261 

% Positive Dev 
77.9 
81.1 
75.7 
72.0 
72.2 
67.5 
58.6 
47.6 
47.4 
47.9 
44.2 
39.6 
34.2 
27.9 
21.0 

7.4 
8.3 

top 5% 
0.5 
0.3 
1.2 
1.2 
1.7 
1.7 
0.8 
1.7 
2.5 
2.5 
3.4 
3.5 
3.2 
3.7 
8.3 

27.7 
36.0 

topl% 
0 
0 

0.8 
0 

0.8 
0.8 

0 
0.8 
2.5 
1.7 
1.7 
4.2 
2.5 
3.3 
5.0 

22.5 
53.3 

top 0.1% 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

16.7 
83.3 

that incorporate both a learned evaluation function and online search. The strategies with 

learned evaluation functions did very well overall; the three versions without online search 

finished next in the average score ordering, above even the hand-set evaluation functions 

with online search. Among these three, the ordering was determine by the amount of training 

data. All of these evaluation functions were learned based on either self-play games or 

against a fixed set of opponents. The strong performance of these evaluation functions 

against the other strategies in this space is evidence that the learned strategies generalize to 

novel strategic contexts. This is consistent with the hypothesis of strategic independence 

in this set of parameters, and the ability of reinforcement learning to exploit this as a local 

search method. 

The differences in the strategic analysis of these two strategy spaces also suggest that 

the attack angle is to some degree more strategically interesting than the other evaluation 
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and search parameters. First, the evaluation/search space has pure-strategy equilibria, while 

the attack angle space does not. There is a much greater diversity of viable strategies in 

the 10-strategy attack angle space than the 17-strategy evaluation/search space, in which 

only 2 strategies factor into the equilibrium analysis. The summary statistics also reflect a 

more balanced strategy space for the attack angle space, while the evaluations/search space 

shows large discrepancies among the strategies on these aggregate measures. All of these 

observations are consistent with the objective of separating the strategy space into strategic 

and independent dimensions of the parameter space. 

5.2 Candidate Exploration Policies 

I now move to a more abstract setting, first describing several candidate policies for explor­

ing games in the reveal-payoff setting. These policies build on the intuitions developed in 

the chaturanga case study. A baseline policy selects profiles to evaluate at random. The 

three remaining methods are based on the idea of finding a best-response to an active 

strategy profile. They differ in how this profile is chosen. I also test some variations of these 

algorithms that use approximate best response in place of exact best-response. The first two 

best-response methods have been studied in the literature, but are limited to confirming only 

pure-strategy Nash equilibria. I introduce a novel exploration method that can also confirm 

mixed-strategy equilibria. 

5.2.1 Random Selection 

The Random Selection (RS) policy serves as a baseline. At each iteration, this algorithm 

selects a random profile to evaluate from the set of unevaluated pure-strategy profiles. It 

tracks information about the stability of each pure-strategy profile, including the number of 

deviations evaluated and the best deviation observed so far. This entails looping over the 

set of unilateral deviations @(s) and updating statistics each time a new profile is evaluated. 
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The same data structure is used in all subsequent algorithms. 

5.2.2 Tabu Best-Response Dynamics 

Best-response dynamics has a long history as a method for finding equilibria of games 

(Fudenberg and Levine, 1998), going back at least to Cournot (1838). Tabu best-response 

dynamics (TBRD) was proposed by Sureka and Wurman (2005) for the problem of finding 

sample pure-strategy Nash equilibrium without searching the entire profile space. The algo­

rithm starts by selecting a random pure-strategy profile as the active profile. It loops through 

the players, computing a best response for the player to the active profile. If an improving 

deviation is found, a new active profile is formed by replacing the player's strategy in the 

old profile with the best response. A Nash equilibrium is confirmed when the algorithm 

loops through all players without finding an improving deviation. A potential problem with 

this procedure is that it may become trapped in an infinite cycle among a set of profiles. 

Sureka and Wurman (2005) prevent this behavior using a tabu list to exclude any profile 

from becoming active more than once. Profiles are added to the list when they become 

active, and any deviation that results in a profile in this list is excluded as a possible best 

response.'] 

I base my implementation on the version of TBRD studied by Jordan et al. (2008), 

with minor modifications. For some of the tasks I consider, there is value in continuing 

exploration after an equilibrium is confirmed. I modify the algorithm to restart from a 

random profile in any case where there are no best responses that are not tabu (for example, 

after confirming an equilibrium). I also track the stability properties of all pure-strategy 

profiles using the same method as the RS policy. Pseudocode for my implementation of 

TBRD is given in Algorithm 1. 

In the base version of the algorithm, the SELECT-DEV1 AT ION {s) subroutine evaluates 
11 Sureka and Wurman (2005) consider both an explicit memory version of the tabu list that remembers 

profiles, and an attribute-based version that remembers strategies; I consider only the explicit version of the 
algorithm in this work. 
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Algorithm 1 Tabu Best-Response Dynamics 
s <— random profile 
k •*— last player 

while observation bound not reached do 
i <— next player 
S'I «- SELECT-DEVI AT ION {s) from %{s)\TABU 
if improving deviation then 

k*— i 
add s to TABf/ 

else 
if ** = & then 

e <— e(s) 
5 <— random profile 

end if 
end if 

end while 

all deviations for player i to strategy profile s and selects the best one. I also experiment with 

variants of the algorithm that compute improving responses, rather than best responses. To 

compute an improving response, the SELECT-DEVI AT ION {s) subroutine may not need 

to evaluate all of the deviations. Two parameters control this behavior. The aspiration 

level is the minimum benefit to deviating that must be found by SELECT-DEVIATION^) 

before returning an improving response. The minimum deviations tested parameter is a 

lower bound on the number of deviations that must be evaluated in each iteration. If either 

of these parameters is set to <», then SELECT-DEVIATION(s) always returns an exact best 

response. 

The order in which deviations are tested may affect the performance of the algorithm 

when using improving responses. In particular, it is desirable to test deviations that are more 

likely to be beneficial early to avoid unnecessary evaluations. In some case this is impossible, 

since the current data set need not contain any information about the payoffs for unevaluated 

profiles.12 However, some games may have structure which allows generalization of payoff 
12For example, if payoffs for each profile are drawn independently from some distribution, there is no way 

to predict which deviations are more likely to be beneficial. 
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information from evaluated profiles to predict the payoffs for unevaluated profiles. 

The average payoff heuristic is one simple method that may be able to exploit such 

structure. Rather than evaluate potential deviations in random order, the heuristic uses the 

average payoffs for each strategy, taken over the evaluated profiles. Deviations are ordered 

by the average payoff for the strategy the deviating player changes to. The evaluation density 

parameter allows this ordering heuristic to be used only after enough profiles have been 

evaluated, specified as the total number of profiles per pure strategy.i3 Until the requisite 

number of have been evaluated, deviations are tested in random order; after the threshold is 

reached, they are ordered by average payoff. If the evaluation density is °°, the algorithm 

always uses the random ordering. 

5.2.3 Minimum-Regret-First Search 

Minimum-Regret-First Search (MRFS) has been used in several prior applications of em­

pirical game-theory (Vorobeychik et al., 2006; Kiekintveld et al., 2006b).14 Jordan et al. 

(2008) conducted the first rigorous test of this algorithm on an equilibrium confirmation task, 

comparing against a version of tabu best-response. The central idea of MRFS is to maintain 

an hypothesis that a pure-strategy profile is a Nash equilibrium, and evaluate profiles which 

will confirm or reject this hypothesis as quickly as possible. The algorithm maintains a 

list of equilibrium candidates—profiles for which the payoffs are known, but which have 

untested deviations. It tracks the lower bound on regret for each candidate profile, denoted 

e(s), using the same method as RS. At each iteration, the search selects an active profile s 

from the set of candidates with minimum e, and selects the next profile to evaluate from the 

unevaluated deviations of s. When all deviations for a profile have been evaluated, the value 

of e is known and the profile is moved from the set of candidates to the set of confirmed 

profiles. As soon as a profile has all deviations evaluated with e < 0, an equilibrium has 

13 Strategies may have varying representation in the evaluated profiles The threshold is on the total number 
of profiles, so there is no lower bound on the number of profiles evaluated containing any specific strategy. 

14The method was called "Best-First Search" in these papers. 
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been found. 

One area where the performance of MRFS can potentially be improved is the order 

in which deviations are tested. I test an ordering using the same average payoff heuristic 

introduced for TBRD. The heuristic orders the deviations using average payoffs after the 

threshold evaluation density is reached. A setting of <» corresponds to the case where the 

algorithm always selects deviations randomly. My implementation (Algorithm 2) is close 

to that of Jordan et al. (2008), with the addition of the average payoff heuristic for the 

SELECT-DEVIATION^) subroutine. 

Algorithm 2 Minimum-Regret-First Search 
Add random profile to candidate set 
while observation bound not reached do 

Select candidate profile s with minimum e 
if all deviations of s are tested then 

move s from candidates to confirmed 
else 

s' +- SELECT-DEVIATION^) from %(s) 
if s'f is not explored then 

Insert s'i into candidates 
update e for all 5 G sf U <3{s') in candidate set 

end if 
end if 

end while 

5.2.4 Subgame Best-Response Dynamics 

A significant limitation of both TBRD and MRFS is that they confirm only pure-strategy 

equilibria. This is particularly problematic for games where no pure-strategy equilibrium 

exists, since both algorithms will evaluate the entire profile space if allowed to do so. I intro­

duce a novel algorithm that generalizes best-response dynamics to confirm mixed-strategy 

Nash equilibria in addition to pure-strategy equilibria. Subgame Best-Response Dynamics 

(SBRD) tracks an active subgame, rather than an active pure-strategy profile. A subgame is 

defined by a subset of each player's pure strategy set. An active equilibrium candidate (in 

pure or mixed strategies) is identified by solving for an equilibrium of the subgame, using 
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a standard equilibrium solver. The search tests deviations from this equilibrium candidate 

to find a best response, evaluating profiles outside of the active subgame as necessary. If 

an improving response is found, the strategy is added to the subgame and the procedure 

iterates; if not, an equilibrium has been confirmed. 

The most important feature of SBRD is the capability to confirm mixed-strategy Nash 

equilibria without evaluating the full game. In fact, the search procedure is guaranteed to 

confirm a Nash equilibrium if the size of the subgame is unrestricted. On each iteration of 

the algorithm, there are two possible outcomes: 

1. A best-response is found, and the strategy is added to the subgame. 

2. The current candidate is confirmed as a Nash equilibrium. 

Each time a best response is found, the size of the subgame increases until it contains 

all strategies in the full game. At this point, the algorithm degenerates to running the 

equilibrium solver on the original game. There is no need to use a tabu list to prevent cycling 

in SBRD. In cases where best-response dynamics cycles between profiles, the strategies are 

simply added to the subgame and become part of the equilibrium computation. 

When the active subgames for SBRD are small relative to the size of the full game, 

the equilibrium and best-response computations are relatively inexpensive in terms of the 

number of profiles evaluated.13 Let / be the maximum size of any players' subgame strategy 

set, m be the maximum size of any players' full strategy set, and n be the number of players. 

The entire subgame must be evaluated to find an equilibrium using a standard solver; the 

size of the subgame is bounded by /". Since each iteration expands the previous subgame, 

some profiles are previously evaluated. Finding a best response to the current equilibrium 

candidate & requires evaluating all profiles with positive probability in the mixture [sj, &_,-], 

for all pure strategies sj that are not in the subgame. The number of such profiles is bounded 

from above by m • ln~l, since dL,- covers at most /n _ 1 profiles and there are m possible pure 

strategies to test. If the support of d-, does not include all strategies in the subgame, the 
15Equilibrium computations are also fast for small subgames, but this is a secondary concern for the purposes 

of my evaluation. 
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number of profiles evaluated during the best-response operation may be much lower. 

Fortunately, there are theoretical reasons to believe that equilibria can often be identified 

using small subgames. Work by McLennan and Berg (2005) on two-player games with 

payoffs drawn from specific distributions shows that small sets of pure strategies are more 

likely to form the support of a Nash equilibrium than larger sets. Approximate Nash equi­

libria with small (logarithmic) support are also known to exist in general settings (Lipton 

et al., 2003). Porter et al. (2008) exploit these results to develop a search procedure for 

computing sample Nash equilibria. Their primary interest is minimizing running time to 

compute equilibria, rather than the number of evaluated profiles, but the success of their 

approach provides further motivation for SBRD. 

Pseudocode for SBRD is given in Algorithm 3. The FIND-EQUILIBRIUM subrou­

tine can be implemented using any standard Nash equilibrium solver. I first use a simple 

enumeration to check for pure-strategy equilibrium candidates. In addition to being fast, 

pure-strategy candidates are desirable in that they require fewer evaluations to test for 

best responses. If no pure-strategy equilibrium exists, I fall back on the logit equilibrium 

solver implemented in Gambit (Turocy, 2005; McKelvey et al., 2006).16 The SELECT-

DEVIATION^) subroutine evaluates all possible deviations for a player and selects the 

best response. I use only exact computations in the existing implementation, but this could 

be extended to use improving responses like those implemented for TBRD. 

It may be desirable to restrict the growth of the subgame, due to the increasing number 

of evaluations required for equilibrium and best-response computations as the size of the 

subgame increases. If the size of the subgame is permanently restricted to less than the size 

of the full game, the search is incomplete and is no longer guaranteed to find an equilibrium. 

However, the completeness holds as long as the subgame is eventually allowed to contain 

the full game. I implement restrictions on the size of the subgame as follows. At each 

iteration, there is a maximum number of strategies allowed in the subgame for each player. 

16This solver does not guarantee finding an exact equilibrium, but in practice I have found this to the be 
most reliable of the available algorithms for computing sample mixed-strategy equilibria. 
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This is defined by two parameters: the initial size is the maximum size at the start, and the 

growth rate gives the number of best-response iterations for each player before the size is 

incremented by one. If the bound is violated after adding a new strategy to the subgame, the 

PRUNE-SUBGAME subroutine removes a strategy. My implementation removes the oldest 

strategy for the given player. A growth rate of less than one or an infinite initial size both 

imply no restrictions on the subgame. I explore variations of the growth rate experimentally. 

Algorithm 3 Subgame Best-Response Dynamics 
subgame <— random pure-strategy profile 
£<r-00 

a«— subgame 
k *— last player 
equilibriumFound <— false 
while observation bound not reached AND NOT equilibriumFound do 

i <— next player 
4 <- SELECT-DEVIATION {a) 
if improving deviation then 

k<— i 
add s'i to subgame 
PRUNE-SUBGAME 
a «- FIND-EQUILIBRIUM (subgame) 

else 
if i — k then 

e <— e(a) 
equilibriumFound <— true 

end if 
end if 

end while 
loop 

evaluate random profile 
end loop 

5.3 Game Classes 

I experiment with several classes of games that have known structural properties. All of 

these classes have been defined elsewhere in the literature, and all but one are generated 

using the GAMUT toolkit (Nudelman et al., 2004). Uniform random and constant sum 
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classes are identical to those defined in Section 4.2. Uniform random games are instances of 

GAMUT'S random game class, and constant sum games are instances of covariance games 

with a covariance parameter of - 1 . These are baselines that should be challenging for 

exploration policies. There is no general compact representation for these games, and the 

payoffs across different profiles are not correlated. In addition, instances of games drawn 

from these classes often do not have pure-strategy Nash equilibria. 

The remaining classes of games all have known structure which exploration policies 

may be able to exploit. In congestion games, players choose subsets of facilities and receive 

the sum of the payoffs for the chosen facilities. The payoffs associated with each facility 

depend only on the number of players that choose the facility. This payoff structure can 

be represented using a potential function, implying that the games always have a pure-

strategy equilibrium (Rosenthal, 1973). Best-response dynamics is known to converge to an 

equilibrium in games with potential functions (Monderer and Shapley, 1996). 

Random local-effect games (random LEGs) have local interactions among pure strategies 

(Leyton-Brown and Tennenholtz, 2003). These interactions are specified using a graphical 

structure, with each node representing a pure strategy and links between nodes representing 

an effect between strategies. A pure strategy s1 affects strategy s2 if the utility for players 

selecting s2 depends on an arbitrary function of the number of players selecting sl. I gen­

erate instances of LEGs using GAMUT'S default parameter settings and random graphs. 

LEGs often (but do not always) have pure-strategy equilibria, and experiments show that 

best-response dynamics quickly converges to equilibrium for most instances of LEGs. 

Supermodular games (Topkis, 1979) have received considerable attention in the lit­

erature, in part because many classic games belong to this class. Supermodularity is a 

complementarity condition on payoffs. A game is supermodular if the strategy sets for the 

players are partially ordered, and the marginal payoffs for selecting a higher strategy are 

increasing as other players select higher strategies. Milgrom and Roberts (1990) show that 

supermodular games possess pure-strategy Nash equilibria, and that a class of adaptive 
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methods including best-response dynamics converges to the set of pure-strategy equilibria in 

the limit. The GAMUT class of supermodular games comprises parameterized versions of 

three classic games: arms race, Cournot duopoly, and Bertrand oligopoly. I use GAMUT'S 

default randomization over instances of these classic games (including their parameter 

settings). 

The final class of games I consider are factored games (Davis et al., 2007). A product 

game is composed from a set of factor games, all in normal form. Instances of the factored 

game class are product games. The strategy sets for a product game are defined by the cross 

product of the strategy sets in the factor games. Each pure strategy in the product game can 

be represented by a vector of strategy choices for each factor game. The payoffs for the 

product game are defined by adding the payoffs for the corresponding outcomes in the factor 

games. 

The current version of GAMUT does not have a generator for factored games, so I 

generate instances as follows. Each product game has exactly two factors, each of which 

may have different numbers of pure strategies. One is the strategic factor, and may have 

arbitrary payoffs. The strategic factors I use are all instances of the random game class. 

The other is the independent factor, which represents a degenerate game in which players 

receive the same payoff for a given pure strategy, regardless of the other players' strategies. 

The optimal choices for independent factors can be determined in isolation. I generate 

independent factors by drawing payoffs for each pure strategy from the same distribution as 

the payoffs in the random game class. The instances of the factored game class are products 

of strategic and independent factors. 

These games are an interesting case for exploration policies because they have an inter­

mediate degree of structure. They have a compact representation in terms of the individual 

factors. However, they do not necessarily possess pure-strategy equilibria, and best-response 

dynamics and other adaptive methods may fail to converge to equilibria. In this sense, they 

are significantly more challenging than congestion, supermodular, and local-effect games. 
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The degree of independence structure in factored games varies with the relative number of 

pure strategies in the independent and strategic factors. When the strategic factor has fewer 

than two strategies, all players in the product game have a dominant strategy. When the 

independent factor has fewer then two strategies, the product game is equivalent to a uniform 

random game. My inclusion of this form of factored games in the experimental analysis 

is motivated part by the type of strategic independence hypothesized for the chaturanga 

strategy space. 

5.4 Identifying Equilibrium 

I first present experimental results comparing the performance of the candidate exploration 

policies on the equilibrium confirmation task for the revealed-payoff observation model. The 

objective in this task is to confirm a Nash equilibrium of the underlying game, evaluating as 

few profiles as possible. This is the central task studied by both Sureka and Wurman (2005) 

and Jordan et al. (2008). I also study the strategy selection task in the next section, but there 

are independent motivations for equilibrium confirmation. For instance, a central authority 

may wish to provide advice to all players in a game by suggesting an equilibrium that they 

could play. 

I test the exploration policies on instances drawn from the six game classes described 

above. All games have two players, and are categorized as either medium or large depending 

on the number of pure strategies. Medium games have 25 pure strategies for each player 

(625 profiles), except congestion games which have 31 pure strategies (961 profiles).17 

Factored games of this size have five pure strategies for both the strategic and independent 

factors, yielding 25 strategies for the product game. 

Large game instances have 100 pure strategies (10000 profiles). I test three variations of 

"Since strategies for congestion games represent choices of subsets, the number of strategies is always 
2k -1 for some value of k where k represents the number of faculties. Five is the maximum number of facilities 
that GAMUT allows for congestion games. 
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Parameters 
oo oo oo 

0,0,00 

0.1,0,00 

0, 10, oo 

0.1,10,00 

0,0,0 
0.1,0,0 
0, 10, 5 
0.1,10,5 

Random 
389 
381 
383 
384 
384 
382 
386 
378 
382 

Constant 
625 
625 
625 
625 
625 
625 
625 
625 
625 

Factored 
247 
255 
246 
250 
246 
247 
241 
253 
246 

LEG 
76 
86 
77 
77 
76 
82 
75 
88 
76 

Supermodular 

135 
87 
87 
95 
95 
82 
75 
88 
76 

Congestion 
91 
118 
105 
102 
97 
113 
96 
116 
98 

Table 5.7 TBRD medium games. The average number of profiles evaluated by variations of 
TBRD before a Nash equilibrium is confirmed. The three parameters specify the aspiration level, 
minimum deviations tested, and evaluation density, respectively. The first line listed corresponds to 
the base TBRD algorithm. 

large factored games with different sizes for the strategic and independent factors, effectively 

varying the degree of independence structure in the game. The number of pure strategies for 

each factor is listed in the results as an ordered pair (strategic, independent). My experimen­

tal data set comprises 500 instances for each class of medium games, and 100 for each class 

of large games. The exploration policies are run twice on each game instance, averaging 

the results. Results are presented in the following tables as the average number of profiles 

evaluated to confirm equilibrium. If no equilibrium is confirmed, the policy evaluates the 

entire profile space. The initial tables show results for different parameter settings of each 

exploration policy to show the impact of these settings. At the end I provide a summary 

table that compares the results for the different exploration policies. 

The first two tables, 5.7 and 5.8, show results for the TBRD algorithm with various 

parameter settings. I highlight two interesting features of the data. TBRD confirms an 

equilibrium using many fewer evaluations for the classes with known structure than for 

random games or constant-sum games. The other striking feature is that varying the method 

of selecting deviations has very little impact on the performance of the policy in most cases. 

One exception is for supermodular games, where improving responses have better perfor­

mance then best responses. Versions of TBRD with lower aspiration levels for improving 
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Parameters 

OOj OO, OO 

0,0,00 

0.1,0,00 

0, 10, °o 
0.1,10,00 

0,0,0 
0.1,0,0 
0,10,5 

0.1,10, 5 

Random 

6729 
6491 
6568 
6657 
6654 
6419 

6725 

6507 

6882 

Factored 

(25,4) 

4344 

4760 

4459 
4438 
4220 

4218 

4248 

4291 

4183 

Factored 

(10,10) 

3457 

3583 

3419 
3415 
3410 

3425 

3427 

3503 

3416 

Factored 

(4,25) 

2184 

2184 

2132 
2148 

2112 

2197 

2112 

2172 

2111 

LEG 

307 
410 
325 
355 
312 
379 
302 
373 
•314 

Supermodular 

1480 

361 
499 
348 
488 
373 
513 
362 
492 

Table 5.8 TBRD large games. The average number of profiles evaluated by variations of TBRD 
before a Nash equilibrium is confirmed. The three parameters specify the aspiration level, minimum 
deviations tested, and evaluation density, respectively. The first line listed corresponds to the base 
TBRD algorithm. 

Parameters 
OO 

0 
5 
10 

Random 
384 
385 
381 
375 

Constant 

625 
625 
625 
625 

Factored 

245 
241 
246 
245 

L E G 

76 
116 
76 
75 

Supermodular 

86 
184 
94 
85 

Congestion 

97 
112 
98 
96 

Table 5.9 MRFS medium games. The average number of profiles evaluated by variations of 
MRFS before a Nash equilibrium is confirmed. The parameter setting specifies the evaluation density 
for the average payoff heuristic. The first setting is the baseline random ordering. 

responses consistently outperform versions with higher aspiration levels for this class of 

games. However, I observe the opposite effect with smaller magnitude for random LEGs, so 

this benefit depends on the type of structure present in the game. The claim with strongest 

support based on this evidence is that replacing best responses with improving responses 

does not substantially degrade the performance of TBRD. 

For MRFS, the parameter space consists of variations of the average payoff heuristic. 

Results for variations of this parameter are shown in Tables 5.9 and 5.10. None of the 

versions of MRFS which use the average payoff ordering substantially outperform the 

baseline which uses random ordering. In some cases, the heuristic can harm performance 

when it is applied with very little data. This is most evident when the heuristic is applied 

with no threshold on the evaluation density (parameter setting 0), on games where equilibria 
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Parameters 

oo 

0 
5 
10 

Random 

6968 

6699 

6883 

6725 

Factored 
(25,4) 

4550 

4373 

4473 

4497 

Factored 

(10,10) 

3564 

3584 

3507 

3430 

Factored 

(4,25) 

2119 

2078 

2139 

2101 

LEG 

321 
742 
313 
310 

Supermodular 

527 
2564 

1105 

663 

Table 5.10 MRFS large games. The average number of profiles evaluated by variations of MRFS 
before a Nash equilibrium is confirmed. The parameter setting specifies the evaluation density for 
the average payoff heuristic; the first setting is the baseline random ordering. 

Parameters 

1,1 
1,2 
1,4 
2,2 
2,4 

Random 

263 
278 
306 
271 
282 

Constant 

548 
574 
593 
571 
591 

Factored 

112 
113 
114 
111 
112 

LEG 

74 
74 
73 
74 
74 

Supermodular 

131 
132 
132 
133 
134 

Congestion 

92 
91 
91 
92 
91 

Table 5.11 SBRD medium games. The average number of profiles evaluated by variations of 
SBRD before a Nash equilibrium is confirmed. The first parameter is the initial size of the subgame, 
and the second is the number iterations before the size is incremented. The first line listed corresponds 
to the base SBRD algorithm. 

are usually found quickly using the random ordering (LEG, supermodular, and congestion). 

Tables 5.11 and 5.12 show data for various parameter settings of SBRD, corresponding to 

different restrictions on how the size of the subgame increases. Here too, the data show only 

marginal differences in performance for different parameter settings. The most noticeable 

effect is for random games, where faster growth (lower settings for the second parameter) 

results in somewhat better performance. 

Parameters 

1,1 
1,2 
1,4 
2,2 
2,4 

Random 

3201 

3955 
4604 
3772 

4690 

Factored 

(25,4) 

1220 

1384 
1459 
1396 

1483 

Factored 

(10,10) 

679 
703 
692 
669 
701 

Factored 

(4,25) 

410 
412 
419 
409 
404 

LEG 

312 
310 
311 
310 
307 

Supermodular 

1512 

1467 
1288 
1473 

1533 

Table 5.12 SBRD large games. The average number of profiles evaluated by variations of SBRD 
before a Nash equilibrium is confirmed. The first parameter is the initial size of the subgame, and the 
second is the number iterations before the size is incremented. The first line listed corresponds to the 
base SBRD algorithm. 
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Solver 
RS 

TBRD 
MRFS 
SBRD 

Random 
614 
378 
375 
263 

Constant 
625. 
625 
625 
548 

Factored 
615 
241 
241 
111 

LEG 
604 
75 
75 
74 

Supermodular 
612 
85 
85 
131 

Congestion 
944 
91 
96 
91 

Table 5.13 All exploration policies, medium games. The average number of profiles evaluated 
to confirm a Nash equilibrium for each of the algorithms, taking the minimum over all parameter 
settings for each class of games. 

Solver 

RS 
TBRP 
MRFS 
SBRD 

Random 

9961 
6419 
6699 
3201 

Factored 
(25,4) 
9958 
4183 
4373 
1220 

Factored 
(10,10) 
9958 
3410 
3430 
679 

Factored 
(4,25) 
9951 
2111 
2078 
404 

LEG 

9919 
302 
310 
307 

Supermodular 

9917 
348 
527 
1288 

Table 5.14 All exploration policies, large games. The average number of profiles evaluated 
to confirm a Nash equilibrium for each of the algorithms, taking the minimum over all parameter 
settings for each class of games. 

Tables 5.13 and 5.14 summarize the results of the experiments with all variations of 

the different exploration policies. This table also adds the RS algorithm as a baseline. The 

results listed for TBRD, MRFS, and SBRD are for the best parameter settings for each game 

class. In most cases the performance for the best setting is quite similar to the performance 

for the other settings, with some exceptions noted above. 

All three of the exploration policies exhibit strong improvements over the baseline 

random selection policy. This is true to some degree even for random games, but the im­

provements for structured games are especially dramatic. In some of the large game classes, 

the exploration policies confirmed an equilibrium after evaluating less than 5% of the profile 

space (i.e., 500 profiles), on average. These improvements are not specific to a particular 

kind of structure, and are observed for all three policies across all of the varieties of structure 

tested. 

Comparing the individual policies, the performance of TBRD and MRFS is virtually 

identical across the range of game classes tested. This confirms the findings of Jordan 

et al. (2008) comparing these two policies on equilibrium confirmation. Jordan et al. do 
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find that MRFS outperforms TBRD on a variation Of the task for approximate equilibrium; 

I do not test this variation here. For game classes that always (or nearly always) have 

pure-strategy equilibria, SBRD has similar performance to both TBRD and MRFS. The 

interesting difference is for classes where pure-strategy equilibria may not exist. SBRD 

shows strong performance gains in this case; this is especially evident in large factored 

games, where SBRD outperforms TBRD and MRFS by large margins. One other interesting 

case is supermodular games, where TBRD and MRFS outperform SBRD. The performance 

of SBRD on these games is on par with versions of TBRD that use exact best-response 

computations. It is likely that introducing improving responses into the SBRD algorithm 

could improve performance on this class of games, similar to the improvement observed for 

TBRD. 

One of the more interesting findings from these experiments on the whole is that varying 

the details of the exploration policies has only a marginal impact on performance, with a 

few important exceptions highlighted in the previous discussion. Most of the parameterized 

variations of the algorithms had nearly identical performance to the originals, and even 

the difference in high-level search control between TBRD and MRFS did not have a great 

impact. There is a very large improvement over the baseline for using some form of best 

response to direct exploration, especially on structured games. The differences observed 

for variations of this idea are small in comparison. The most important exception to this 

is SBRD, which achieves substantial improvements in some game classes by confirming 

mixed-strategy equilibria in addition to pure-strategy equilibria. 

5.5 Selecting Strategies 

The results from the previous set of experiments demonstrate the value of the candidate 

exploration policies for the equilibrium confirmation task. Here I test the value of these 

policies for the strategy selection task, applying the meta-strategy analysis framework in-
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traduced in Chapter 3. In the strategy selection experiments presented in Chapter 4, the 

information players received to make strategy choices was generated by fixed policies. 

For the incomplete observation model, the policy is equivalent to the random selection 

baseline in this chapter. In this section I study meta-strategies that combine the exploration 

policies defined in this chapter with the best strategy selection method from Chapter 4, logit 

equilibrium (LES). The question is whether the directed exploration policies improve the 

strategy selections made by LES, 

I test the default version of each candidate exploration policy in combination with LES. 

The exploration policy is run until reaching a given bound on the number of profiles evalu­

ated. This observation is used by LES to make strategy selections, just as in the incomplete 

observation model. I use the same method to tune the parameter X of the LES algorithm 

as before. For each combination of exploration policy, game class, and bound on profiles 

evaluations, I simulate a meta-game with 10 different settings of X. The value of X with the 

lowest homogeneous regret is used in the following experiments comparing the exploration 

policies. 

I present results for five classes of games: uniform random, supermodular, random LEG, 

and two variations of factored games. All games have 2 players and 10 pure strategies per 

player (100 profiles). The two versions of factored games have strategic and independent 

factors of sizes (5,2) and (2,5). I vary the number of profiles the exploration policy is 

allowed to evaluate. All of the meta-games are estimated from 1,000 game instances, with 

exploration policies run once for each instance. The performance measure is homogeneous 

profile regret, as defined in Section 4.3. 

The results of the meta-strategy analysis are shown in Figures 5.3, 5.4, 5.5, 5.6, and 

5.7. All three directed exploration policies show improvements over the random selection 

policy. There are benefits to deviating from RS in almost all cases where exploration policies 

are allowed to evaluate more than 10 profiles, and in most cases the benefit to deviating is 

large. Among the three directed policies, there is no method that clearly outperforms the 
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others. All three typically have very low homogeneous regret (less than 1% of the maximum 

payoff). The policy with lowest regret depends on the class of games, and the amount of 

exploration permitted. MRFS typically has the lowest regret on random games and the 

factored games with larger strategic factors. However, it has higher regret than TBRD and 

SBRD on supermodular games, and for small numbers of profiles evaluated in random LEG 

games and (2,5) factored games. 

Given that TBRD and MRFS had very similar performance in the equilibrium confir­

mation task, it is not surprising that these policies perform similarly on strategy selection. 

However, SBRD does not significantly outperform TBRD and MRFS, even for classes of 

games where it was able to confirm equilibria using fewer profiles (random and factored). 

One possibility is that some of these exploration policies are gathering evidence that is 

useful for strategy selection, but not directly useful for confirming equilibrium. Evaluating 

the policies on related tasks such as finding approximate equilibria could provide additional 

explanations for the results observed in the strategy selection task. A noticeable trend in the 

data is that the homogeneous regret for SBRD tends to increase as more profile evaluations 

are allowed. This may be explained in part by the fact that SBRD defaults to random 

selection after it has confirmed an equilibrium, and random selection performs quite poorly. 

An alternate policy implementing random restarts or continued subgame expansion with 

new criteria might improve performance at this stage. 

5.6 Discussion 

The experiments presented here constitute the broadest evaluation to date of exploration 

policies for the reveal-payoff model of observation. They cover parameterizations of three 

policies, including the novel SBRD policy. The evaluation covers games with several differ­

ent forms of structure, and tests two distinct tasks, equilibrium confirmation and strategy 

selection. The candidate exploration policies improve performance over the baseline in 
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Figure 5.3 Meta-strategy analysis for candidate exploration policies on uniform random games. 
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Figure 5.4 Meta-strategy analysis for candidate exploration policies on factored (5,2) games. 
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Factored Games (2,5) 
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Figure 5.5 Meta-strategy analysis for candidate exploration policies on factored (2,5) games. 
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Figure 5.6 Meta-strategy analysis for candidate exploration policies on random LEG games. 
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Supermodular Games 
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Figure 5.7 Meta-strategy analysis for candidate exploration policies on supermodular games. 

on both tasks, and across all of the varieties of structure tested. In general, I find that the 

differences in performance between different variations of these policies is quite small, 

compared to the large gains from using any form of best response over the baseline random 

selection. The most interesting exception is for the confirmation task, where SBRD does 

offer clear improvements for some classes of games. The finding that most variations of 

the exploration policies are roughly equivalent may actually be quite useful in practice. 

Most straightforward policies that employ some form of best response are likely to improve 

performance, and the specific form of structure in the game does not need to be known or 

specified by the analyst up front to achieve these benefits. 

The specific exploration policies and game classes explored in this chapter were moti­

vated in part by the initial case study of chaturanga. It is possible to analyze chaturanga 

using an approach similar to SBRD. For a set of candidate chaturanga strategies, simulation 

can be used to estimate a game matrix for the subgame represented by these strategies. 
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Applying equilibrium analysis to this subgame identifies a set of opponents, and reinforce­

ment learning can be used to search for an improving response to these opponents. The 

identified response is added to the set of candidates, and the process iterates. This process 

has the same high-level structure as SBRD, but uses simulation to estimate the payoffs in 

the subgame, and local search rather than exact best-response computations. My results 

provide evidence in an abstract setting that this form of exploration is likely to be effective 

if the parameterized strategy space for chaturanga has independence structure. 

5.7 Related Work 

Game playing programs have a long history in artificial intelligence (Schaeffer and van den 

Herik, 2002), going back to seminal works by Shannon (1950) on chess and Samuel (1959) 

on checkers. In most of this work, game theory plays little role in the analysis. My case study 

of chaturanga considers the game from a game-theoretic perspective. One area of game 

playing the does make significant use of game-theoretic principles is recent developments 

for poker-playing agents. Advances in exploiting symmetries and abstraction techniques 

have allowed researchers to find equilibrium solutions for increasingly large versions of 

poker (Zinkevich et al., 2008; Gilpin et al., 2008). Versions of the game with many players 

remain very challenging for current methods, but some progress has been made for versions 

with more than two players using approximation methods (Ganzfried and Sandholm, 2008). 

In this chapter I study exploration policies for the case where payoffs are either revealed 

or not. Exploration policies for cases where profiles may be sampled to reveal noisy informa­

tion about the payoffs are another interesting line of research. Walsh et al. (2003) introduced 

the first algorithm for this case, using an approximation of the value of information. Jordan 

et al. (2008) improves on this algorithm using a different approximation. Vorobeychik and 

Wellman (2008) also considers a similar task for infinite games, introducing a globally 

convergent methods based on simulated annealing. 
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Chapter 6 

Conclusion 

This thesis contributes to the development of practical tools for strategic reasoning in very 

complex games. My results advance the methodology of empirical game-theoretic analysis, 

which combines massive computation, empirical methods, and game-theoretic principles to 

reason about games that are well beyond the limits of conventional game-theoretic analysis. 

The existing literature related to empirical game-theoretic analysis describes the general 

methodology and several successful applications to specific domains. However, there has 

been little comprehensive evaluation of different techniques for building and analyzing 

empirical game models. I contribute to the literature by developing and evaluating methods 

for empirical game-theoretic analysis, emphasizing broad evaluation to identify general 

principles. 

I model empirical game estimation as a meta-game, and apply this framework to derive 

new insights into effective approaches for both building and analyzing empirical game 

models. The first specific problem I consider is selecting a strategy given an uncertain 

model of the game. For this task, I identify logit equilibrium as the current champion and 

present considerable evidence that this method makes good predictions of opponent play 

across a wide range of conditions. I also consider the problem of selecting samples to 

build an estimated game model given limited observation capabilities. Here I provide a 

comprehensive evaluation of several exploration policies for games on both the strategy 

selection task and an equilibrium identification task. All of the policies tested substantially 
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outperform a random exploration baseline for both tasks on games with known structural 

properties. A novel exploration policy I introduce—subgame best-response dynamics—is 

able to confirm mixed-strategy equilibria in addition to pure-strategy equilibria, generaliz­

ing previous methods. This policy substantially improves performance on an equilibrium 

confirmation task for some classes of games. 

6.1 Summary of Contributions 

Chapter 2 describes the methodology of empirical game-theoretic analysis and establishes 

the relevance of this approach for strategic reasoning in very challenging domains. I re­

port an application of the methodology to the Trading Agent Competition Supply Chain 

Management game. Solving the full version of this game in any exact sense is well be­

yond present capabilities for game-theoretic analysis. To my knowledge, no other team of 

agent developers has even attempted to use game-theoretic reasoning to analyze the full 

TAC SCM game—or any similar scenario. This game pushes the limits even for empirical 

game-theoretic analysis, possessing an extremely large strategy space, stochastic outcomes, 

and high computational demands for simulating game instances. Nevertheless, we are 

able to draw useful conclusions about agent strategies using this approach, supplementing 

tournament results. This application contributes broadly to the evidence supporting the 

usefulness of empirical methods for analyzing specific complex games, and is particularly 

interesting as an example of the scalability of the methodology. 

The remainder of the thesis advances our understanding of how to perform empirical 

game-theoretic analysis well. Chapter 3 begins by developing a common framework for 

evaluation, which to this point has been largely absent from the literature. The central insight 

is that the process of empirical game-theoretic analysis can be modeled as a meta-game, 

endogenizing the players' estimates of the game as observations. I use game-theoretic 

analysis of meta-strategies to evaluate a variety of approaches for building and analyzing 
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empirical estimates of games. The methodology I apply is experimental, and designed to 

support broad evaluation across many game instances, different types of games, and different 

modes of observations. This approach is particularly useful for studying the strengths and 

weaknesses of meta-strategies across different conditions, yielding more general insights 

into their performance. The experiment that concludes the chapter demonstrates meta-

strategy analysis and some of the capabilities of the approach. Using a relatively simple 

setup, I present compelling evidence that applying complete-information solution concepts 

to estimated games results in poor performance under uncertainty. 

Chapter 4 addresses the question of how players should analyze estimated games to 

select strategies. In this setting, players have complex payoff uncertainty that does not 

vanish in the limit. Most theoretical treatments of payoff uncertainty either examine cases 

with infinitesimal noise, or make restrictive assumptions on the uncertainty that do not hold 

for the general case of estimating a game. Is it possible to offer any guidance at all for 

how to play using an estimated game model? I introduce three families of candidate meta-

strategies that interpolate—using a single parameter—between uninformed predictions and 

equilibrium predictions that ignore noise in the estimated game. I apply the meta-strategy 

analysis framework from Chapter 3 to analyze these candidates, yielding two main results. 

First, I show evidence for a systematic relationship between observation uncertainty and 

the interpolation parameters. As uncertainty increases, broader predictions are preferable. 

Second, I find strong support for logit equilibrium as the champion for this task among 

the proposed candidates, identifying this as an appropriate tool for analyzing estimated 

game models. Both of these main results hold for a range of different game classes and 

observation models. 

Chapter 5 is concerned with building good models to estimate a game. In particular, if a 

player has control over the information revealed, what policy should the player use to explore 

the profile space? The chapter begins with a motivating case study of chaturanga, focusing 

particularly on the idea of exploiting independence structure in a parameterized strategy 
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space for the game. Building on the intuitions of this study, I test exploration policies 

on classes of games with known structural properties. I provide the most comprehensive 

evaluation to date of exploration policies for the revealed-payoff observation model, testing 

performance on both an equilibrium identification task and the strategy selection task (using 

the meta-game framework). A novel policy I propose, subgame best-response dynamics, 

is able to confirm mixed-strategy Nash equilibrium without exhaustive exploration. This 

policy improves the state of the art for equilibrium-finding algorithms on classes of games 

that may not possess pure-strategy equilibria. All of the candidate policies are generally able 

to exploit a variety of structural properties to improve performance on both tasks, relative 

to a random exploration baseline policy. I also explore different parameterizations of the 

base exploration policies for the equilibrium identification task. With a few exceptions, 

varying the details of the search procedure using these parameterizations had little effect on 

the ability of the algorithms to identify equilibria quickly. In particular, using approximate 

best-response calculations in lieu of exact ones does not substantially degrade performance 

in the cases tested. 

6.2 Future Work 

In this thesis I take significant steps towards the goal of developing a comprehensive toolkit 

for strategic reasoning in complex domains. My approach is computational, and advances 

the broader agenda of applying the methods of computer science to scale game-theoretic 

analysis to large multi-agent systems. One of the key challenges to advancing this agenda 

is to find ways to generalize the results achieved through computational means. There are 

many impressive examples of computational methods applied to analyze specific games of 

ambitious scope, including checkers (Schaeffer et al., 2005), chess (Campbell et al., 2002), 

and the our own analysis of the Trading Agent Competition, parts of which featured in 

Chapter 2. However, the strategies generated for specific games seem to offer relatively little 
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insight into how to play other games of interest. My work on meta-strategy analysis moves 

towards providing more general insights into effective strategic reasoning by investigating 

broader classes of models. 

The methodology I develop for analyzing meta-games provides a framework for ad­

dressing many open questions, and I have only begun to investigate the possible approaches 

for building and analyzing empirical game models. The results of my initial explorations 

motivate further work in several directions. My experiments on strategy selection under 

uncertainty identified logit equilibrium as the current champion. In the discussion of this 

method I highlighted several ways in which this solution concepts simplifies aspects of 

the meta-game model. A next step in this line of work is to develop new variations of 

quantal-response equilibrium that remove these restrictions. If new meta-strategies gener­

ated using this approach prove effective for playing meta-games, it would be very interesting 

to test whether these improvements also lead to better explanations of experimental data with 

human subjects. A similar extension of my work in this area is to add additional models from 

the behavioral literature as candidate meta-strategies, such as noisy introspection Goeree and 

Holt (2004) and cognitive hierarchies Camerer et al. (2004). My experimental framework is 

also well-suited to testing heuristics and other hypothesized behaviors that may be difficult 

to analyze mathematically. 

Another important step in developing general approaches for strategy selection under 

uncertainty is to find better ways to select parameter settings for the algorithms. Most 

existing methods rely on fitting these parameters based on preliminary data. In my experi­

ments I used the results of the self-play experiments to set parameters for the comparison 

across meta-strategies. Behavioral experiments often use maximum likelihood estimation 

to set parameters based on empirical data. These methods are not ideal, and it would be a 

significant advance to develop more principled methods for parameter choices based on what 

is known about the game and opponents. A final direction that would be useful to explore is 

finding exact solutions to (simple) meta-games. Even if these solutions are for restricted 
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meta-games and do not generalize easily, they would be valuable for benchmarking other 

candidate meta-strategies to better evaluate the quality of the approximate solutions they 

offer. 

In Chapter 51 test exploration policies for cases where limited information about payoffs 

is available. These policies offer improved performance over random exploration on two dif­

ferent analysis tasks in cases where the game has underlying structure that can be exploited. 

One advantage of the policies tested is that they do not require any prior knowledge of 

specific structural properties. However, it seems likely that methods that explicitly identify 

and exploit specific types of structure could further improve performance on some analysis 

tasks. An active topic of research in game theory is developing structured representations 

of games and algorithms that exploit these representations. Most of the current research 

assumes that the game structure is provided by the analyst. If the analyst does not know the 

structure of the problem, this becomes a problem of structure discovery, and any structure 

must be inferred from the data. This is a challenging problem, but there are methods from 

single-agent decision theory that may inform structure discovery in games. For example, 

there are methods for learning the structure of Bayesian networks from empirical data (Fried­

man and Koller, 2003). One possible application of structure discovery is more efficient 

exploration policies for games. Structure discovery may also be of independent interest as 

a means of providing analysts as more intuitive understanding of the important strategic 

relationships in a game. 
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